题目描述

Bessie has been playing with strings again. She found that by

changing the order of the alphabet she could make some strings come before all the others lexicographically (dictionary ordering).

For instance Bessie found that for the strings "omm", "moo", "mom", and "ommnom" she could make "mom" appear first using the standard alphabet and that she could make "omm" appear first using the alphabet

"abcdefghijklonmpqrstuvwxyz". However, Bessie couldn't figure out any way to make "moo" or "ommnom" appear first.

Help Bessie by computing which strings in the input could be

lexicographically first by rearranging the order of the alphabet. To compute if string X is lexicographically before string Y find the index of the first character in which they differ, j. If no such index exists then X is lexicographically before Y if X is shorter than Y. Otherwise X is lexicographically before Y if X[j] occurs earlier in the alphabet than Y[j].

给出n个字符串,问哪些串能在特定的字母顺序中字典序最小。

输入输出格式

输入格式:

  • Line 1: A single line containing N (1 <= N <= 30,000), the number of strings Bessie is playing with.

  • Lines 2..1+N: Each line contains a non-empty string. The total number of characters in all strings will be no more than 300,000. All characters in input will be lowercase characters 'a' through 'z'. Input will contain no duplicate strings.

输出格式:

  • Line 1: A single line containing K, the number of strings that could be lexicographically first.

  • Lines 2..1+K: The (1+i)th line should contain the ith string that could be lexicographically first. Strings should be output in the same order they were given in the input.

输入输出样例

输入样例#1:

omm
moo
mom
ommnom
输出样例#1:

omm
mom

说明

The example from the problem statement.

Only "omm" and "mom" can be ordered first.

Solution

要想使一个词语的字典序最小,首先应满足长度尽量短,也就是没有任何一个词构成当前词的前缀

其次是词的每一位都要严格大于与之享有共同前缀的词语

首先对词典建一棵trie

要满足答案的串必须满足其终止节点到根没有其他终止节点,也就是第一个限定

向需要规定大小关系的字符间连边

拓扑排序一下,判环,若无环则可以作为答案输出

(最近尽量写思路清晰但是比较长的程序,其实我是有能力写得很短跑得很快的,但在平时这样似乎没有什么意义,思路清晰最重要吧,毕竟把程序变快是很简单的事)

#include <stdio.h>
#include <memory.h>
#define MaxN 30010
#define MaxL 300010
#define MaxBuf 1<<22
#define Blue() ((S==T&&(T=(S=B)+fread(B,1,MaxBuf,stdin),S==T))?0:*S++)
char B[MaxBuf],*S=B,*T=B;
template<class Type>inline void Rin(Type &x){
x=;int c=Blue();
for(;c<||c>;c=Blue())
;
for(;c>&&c<;c=Blue())
x=(x<<)+(x<<)+c-;
}
inline void geTc(char *C,int &x){
x=;char c=Blue();
for(;c<'a'||c>'z';c=Blue())
;
for(;c>='a'&&c<='z';c=Blue())
*C++=c,x++;
}
bool g[][];
char ch[MaxL],fol[MaxL];
int n,l,pointer,ans,lef[MaxN],in[],out[],o[MaxN];
class Trie{
int ch[MaxL][],root,tot,belong[MaxL];
public:
Trie(){
root=tot=;
memset(ch,,sizeof ch);
memset(belong,,sizeof belong);
}
inline void insert(char *C,int len,int tim){
int at=root;
lef[tim]=pointer;
for(int i=;i<len;i++){
fol[pointer++]=C[i];
if(!ch[at][C[i]-'a'])
ch[at][C[i]-'a']=++tot;
at=ch[at][C[i]-'a'];
}
belong[at]=tim;
}
inline bool design(int i){
int at=root;
for(int j=lef[i];j<lef[i+];j++){
if(belong[at])return false;
int c=fol[j]-'a';
for(int k=;k<;k++)
if(ch[at][k]&&k!=c&&!g[c][k]){
g[c][k]=true;
in[k]++;
out[c]++;
}
at=ch[at][c];
}
return true;
}
}Tree;
namespace enumerate{
bool vis[];
int _que[],hd,tl,tot,sum;
inline bool topsort(){
tot=sum=;
hd=;tl=;
for(int i=;i<;i++){
if(in[i] || out[i])
tot++;
if(!in[i] && out[i]){
_que[++tl]=i; vis[i]=true;
}
else vis[i]=false;
}
while(hd<=tl){
sum++;
int now=_que[hd++];
for(int i=;i<;i++)
if(g[now][i]){
in[i]--;
if(!in[i] && !vis[i]){
_que[++tl]=i; vis[i]=true;
}
}
}
return tot==sum;
}
void main(){
for(int i=;i<=n;i++){
memset(g,false,sizeof g);
memset(in,,sizeof in);
memset(out,,sizeof out);
if(Tree.design(i) && topsort())
o[++ans]=i;
}
}
}
#define FO(x) {freopen(#x".in","r",stdin);}
int main(){
FO(usaco12dec first);
Rin(n);
for(int i=;i<=n;i++){
geTc(ch,l);
Tree.insert(ch,l,i);
}
lef[n+]=pointer;
enumerate::main();
printf("%d\n",ans);
for(int i=;i<=ans;i++){
for(int j=lef[o[i]];j<lef[o[i]+];j++)
putchar(fol[j]);
putchar('\n');
}
return ;
}

[bzoj3012][luogu3065][USACO12DEC][第一!First!] (trie+拓扑排序判环)的更多相关文章

  1. Legal or Not(拓扑排序判环)

    http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Others)   ...

  2. POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39602   Accepted: 13 ...

  3. LightOJ1003---Drunk(拓扑排序判环)

    One of my friends is always drunk. So, sometimes I get a bit confused whether he is drunk or not. So ...

  4. HDU1811 拓扑排序判环+并查集

    HDU Rank of Tetris 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1811 题意:中文问题就不解释题意了. 这道题其实就是一个拓扑排序判圈 ...

  5. Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)

    Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megaby ...

  6. [USACO12DEC]第一!First! (Trie树,拓扑排序)

    题目链接 Solution 感觉比较巧的题啊... 考虑几点: 可以交换无数次字母表,即字母表可以为任意形态. 对于以其他字符串为前缀的字符串,我们可以直接舍去. 因为此时它所包含的前缀的字典序绝对比 ...

  7. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  8. [Luogu3065][USACO12DEC]第一!First!

    题目描述 Bessie has been playing with strings again. She found that by changing the order of the alphabe ...

  9. bzoj 3012: [Usaco2012 Dec]First! Trie+拓扑排序

    题目大意: 给定n个总长不超过m的互不相同的字符串,现在你可以任意指定字符之间的大小关系.问有多少个串可能成为字典序最小的串,并输出这些串.n <= 30,000 , m <= 300,0 ...

随机推荐

  1. Linux 系统命令 - pwd - 显示当前所在的位置

    命令详解 重要星级: ★★★★★ 功能说明: pwd命令是 "print working directory" 中每个单词的首字母缩写,其功能是显示当前工作目录的绝对路径.在实际工 ...

  2. Linux进入单用户模式的两种方法

    单用户模式的作用 在使用Linux系统中,维护人员经常会碰到一个问题,就是在拥有root账号权限和密码的用户中,总是会出现忘记root密码的情况. 遇到这种情况,一般情况下,维护人员就会通过最常用的方 ...

  3. J20180116

    用度 总务 用度係 总务科(管理办公用品等) 型紙 设计图 プラント 工厂

  4. bzoj 2015: [Usaco2010 Feb]Chocolate Giving【spfa】

    因为是双向边,所以相当于两条到1的最短路和,先跑spfa然后直接处理询问即可 #include<iostream> #include<cstdio> #include<q ...

  5. bzoj 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛【树形dp】

    设f[u][0/1]为u这个点不选/选,转移的时候从儿子转移,f[u][1]=sum(f[son][0])+1,f[u][0]=sum(max(f[son][0],f[e[i].to][1])) #i ...

  6. bzoj 1653: [Usaco2006 Feb]Backward Digit Sums【dfs】

    每个ai在最后sum中的值是本身值乘上组合数,按这个dfs一下即可 #include<iostream> #include<cstdio> using namespace st ...

  7. python自动化测试学习笔记-6excel操作xlwt、xlrd、xlutils模块

    python中通过xlwt.xlrd和xlutils操作xls xlwt模块用于在内存中生成一个xls/xlsx对象,增加表格数据,并把内存中的xls对象保存为本地磁盘xls文件; xlrd模块用于把 ...

  8. NET 编程题

    1.C#编写创建一个线程的代码 using System; using System.IO; using System.Threading ; class MyThread{ public int c ...

  9. TCP流量控制与拥塞解决

    滑动窗口 但要提高网络利用率: nagle算法 - 延迟 慢启动.拥塞避免 发送端主导cwnd init  set  ssthresh  &  cwnd = swnd loop : 网不阻塞 ...

  10. C# 访问mongodb数据库

    1.引用四个mongodb动态库MongoDB.Bson.dll,MongoDB.Driver.Core.dll,MongoDB.Driver.dll,MongoDB.Driver.Legacy.dl ...