P2973 [USACO10HOL]赶小猪
跟那个某省省选题(具体忘了)游走差不多...
把边搞到点上然后按套路Gauss即可
貌似有人说卡精度,$eps≤1e-13$,然而我$1e-12$也可以过...
代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define writeln(x) write(x),puts("")
#define writep(x) write(x),putchar(' ')
using namespace std;
inline int read(){
int ans=,f=;char chr=getchar();
while(!isdigit(chr)){if(chr=='-') f=-;chr=getchar();}
while(isdigit(chr)){ans=(ans<<)+(ans<<)+chr-;chr=getchar();}
return ans*f;
}void write(int x){
if(x<) putchar('-'),x=-x;
if(x>) write(x/);
putchar(x%+'');
}const int M = ;
int n,m,p,q,du[M],e[M][M];
double a[M][M],ans[M],b[M];
const double eps=1e-;
inline void Gauss(){
for(int i=;i<=n;i++){
int maxn=i;
for(int j=i+;j<=n;j++) if(fabs(a[j][i]-a[maxn][i])<eps) maxn=j;
for(int j=;j<=n+;j++) swap(a[maxn][j],a[i][j]);
for(int j=n+;j>=i;j--)
for(int k=i+;k<=n;k++)
a[k][j]-=a[k][i]/a[i][i]*a[i][j];
}
for(int i=n;i>=;i--){
for(int j=i+;j<=n;j++)
a[i][n+]-=a[j][n+]*a[i][j];
a[i][n+]/=a[i][i];
}
for(int i=;i<=n;i++) ans[i]=a[i][n+];
}
int main(){
n=read(),m=read(),p=read(),q=read();
const double ps=p*1.0/q;
for(int i=;i<=m;i++){
int x=read(),y=read();
e[x][y]=e[y][x]=;
du[x]++,du[y]++;
}
for(int i=;i<=n;i++){
a[i][i]=1.0;
for(int j=;j<=n;j++)
if(e[i][j])
a[i][j]-=(1.0-ps)/du[j];
}
a[][n+]=1.0;
Gauss();
for(int i=;i<=n;i++)printf("%.9lf\n",ans[i]*ps);
return ;
}
P2973 [USACO10HOL]赶小猪的更多相关文章
- 洛谷P2973 [USACO10HOL]赶小猪
https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...
- 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)
题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...
- Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP
有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...
- [Luogu2973][USACO10HOL]赶小猪
Luogu sol 首先解释一波这道题无重边无自环 设\(f_i\)表示\(i\)点上面的答案. 方程 \[f_u=\sum_{v,(u,v)\in E}(1-\frac PQ)\frac{f_v}{ ...
- Luogu2973:[USACO10HOL]赶小猪
题面 Luogu Sol 设\(f[i]\)表示炸弹到\(i\)不爆炸的期望 高斯消元即可 另外,题目中的概率\(p/q\)实际上为\(1-p/q\) 还有,谁能告诉我不加\(EPS\),为什么会输出 ...
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- [Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…
题目描述 The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. ...
- [USACO10HOL]赶小猪
嘟嘟嘟 这题和某一类概率题一样,大体思路都是高斯消元解方程. 不过关键还是状态得想明白.刚开始令\(f[i]\)表示炸弹在点\(i\)爆的概率,然后发现这东西根本无法转移(或者说概率本来就是\(\fr ...
- luogu P2973 [USACO10HOL]Driving Out the Piggies G 驱逐猪猡
luogu LINK:驱逐猪猡 bzoj LINK:猪猪快跑 问题是在1时刻有个炸蛋在1号点 这个炸弹有p/q的概率爆炸 如果没有爆炸 那么会有1/di的概率选择一条边跳到另外一个点上重复这个过程. ...
随机推荐
- HDU 2147 找规律博弈
题目大意: 从右上角出发一直到左下角,每次左移,下移或者左下移,到达左下角的人获胜 到达左下角为必胜态,那么到达它的所有点都为必败态,每个点的局势都跟左,下,左下三个点有关 开始写了一个把所有情况都计 ...
- [luoguP1044] 栈(数论?)
传送门 卡特兰数 代码 #include <cstdio> int n; long long f[20]; int main() { int i; scanf("%d" ...
- es6异步编程 Promise 讲解 --------各个优点缺点总结
//引入模块 let fs=require('fs'); //异步读文件方法,但是同步执行 function read(url) { //new Promise 需要传入一个executor 执行器 ...
- 共享一个NOI用过的vimrc [rc][vimrc]
set nocp set nu set ru set noet set ai set cin set mouse =a set mp=g++\ %\ -o\ %<\ -g\ -Wall\ -Ws ...
- [NOIP2004] 提高组 洛谷P1090 合并果子
题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...
- codeforces Gym 100971 A、B、C、F、G、K、L
A题 直接把问号全部变为陆地如果所有陆地连通 那么再逐个把刚才变成陆地的问号变为水如果依旧连通有多种解 为什么我的代码跑不过去,和网上的题解思路一模一样!!?? #include<cst ...
- 技术杂记之:在阿里云centos7上部署JDK MYSQL TOMCAT
今日小编闲来无事,乘着公司新项目即将上线之际,在阿里云上整了一台centos作为测试机.原本以为一个小时搞定,结果还是花了一点小小时间.不管怎么说,记录下来,给各位小白当成课后甜点吧. 价格 先上价格 ...
- HTTPS 是如何保证安全的?
每当我们讨论到信息安全的时候,我们最长接触到的信息加密传输的方式莫过于 HTTPS 了,当我们浏览器地址栏闪现出绿色时,就代表着这个网站支持 HTTPS 的加密信息传输方式,并且你与它的连接确实被加密 ...
- Check ini style config tool
INI style config is like below [section] # comment key = value Sometimes we want to check the config ...
- 冲刺Offer - 二叉树的深度
https://www.nowcoder.net/practice/435fb86331474282a3499955f0a41e8b?tpId=13&tqId=11191&tPage= ...