3144: [Hnoi2013]切糕

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1526  Solved: 827
[Submit][Status][Discuss]

Description

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

Source

经典最小割模型

题面简化为,一个矩阵,每个格子分配一个数,不同的数字,代价不同,要求相邻格子数字差小等于d

求最小代价

每个格子拆出40个点

连同S与T用40种代价串起来

即 p(x,y,z)->p(x,y,z+1)边权f(x,y,z+1)

然后 p(x,y,z)->p(x’,y’,z-d)边权inf (x,y)与(x’,y’)相邻

把边画出来正确性很显然

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
int read(){
register int x=;bool f=;
register char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
}
const int N=;
const int M=N*N*N;
const int inf=2e9;
int n,m,S,T,head[M],dis[M],q[M*];
bool vis[M];
int P,Q,R,D,mp[N][N][N],id[N][N][N],cnt;
struct node{
int v,next,cap;
}e[M*];int tot=;
void add(int x,int y,int z){
e[++tot].v=y;e[tot].cap=z;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=;e[tot].next=head[y];head[y]=tot;
}
bool bfs(){
for(int i=S;i<=T;i++) dis[i]=inf;
int h=,t=;q[t]=S;dis[S]=;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(e[i].cap&&dis[v]>dis[x]+){
dis[v]=dis[x]+;
if(v==T) return ;
q[++t]=v;
}
}
}
return dis[T]<inf;
}
int dfs(int x,int f){
if(x==T) return f;
int used=,t;
for(int i=head[x];i;i=e[i].next){
int v=e[i].v;
if(e[i].cap&&dis[v]==dis[x]+){
t=dfs(v,min(f,e[i].cap));
e[i].cap-=t;e[i^].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=;
return used;
}
int dinic(){
int res=;
while(bfs()) res+=dfs(S,inf);
return res;
}
int main(){
scanf("%d%d%d%d",&P,&Q,&R,&D);
for(int i=;i<=R;i++){
for(int j=;j<=P;j++){
for(int k=;k<=Q;k++){
scanf("%d",&mp[i][j][k]);
id[i][j][k]=++cnt;
}
}
}
S=,T=cnt+;
for(int i=;i<=R;i++){
for(int j=;j<=P;j++){
for(int k=;k<=Q;k++){
if(i==)
add(S,id[i][j][k],mp[i][j][k]);
else
add(id[i-][j][k],id[i][j][k],mp[i][j][k]);
if(i==R)
add(id[i][j][k],T,inf);
if(i>D){
if(j!=) add(id[i][j][k],id[i-D][j-][k],inf);
if(j!=P) add(id[i][j][k],id[i-D][j+][k],inf);
if(k!=) add(id[i][j][k],id[i-D][j][k-],inf);
if(k!=Q) add(id[i][j][k],id[i-D][j][k+],inf);
}
}
}
}
printf("%d",dinic());
return ;
}

3144: [Hnoi2013]切糕的更多相关文章

  1. BZOJ 3144: [Hnoi2013]切糕

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1495  Solved: 819[Submit][Status] ...

  2. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  3. 【BZOJ 3144】 3144: [Hnoi2013]切糕 (最小割模型)

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1764  Solved: 965 Description Inp ...

  4. 3144:[HNOI2013]切糕 - BZOJ

    题目描述 Description 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你 ...

  5. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  6. ●BOZJ 3144 [Hnoi2013]切糕

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3144 题解: "这是一个经典的最小割模型" ---引用自别人的博客 .. ...

  7. 【BZOJ】3144: [Hnoi2013]切糕

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3144 MDZZ,不知道为什么被卡常数了/TAT(特判才过去的....论vector的危害性 ...

  8. 【刷题】BZOJ 3144 [Hnoi2013]切糕

    Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x, ...

  9. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

随机推荐

  1. HDU-4738 Caocao's Bridges,注意重边不是桥!

    Caocao's Bridges 题意:曹操赤壁之战后卷土重来,他在n个小岛之间建立了m座桥.现在周瑜只有一颗炮弹,他只能炸毁一座桥使得这些岛屿不再连通.每座桥上都可能会有士兵把手,如果想安放***那 ...

  2. rsync同步命令

     rsync同步时,--delete删除目标目录比源目录多余文件的方法1 .实例说明 服务器A上同步/tmp/work目录到远程服务器B的/tmp/work目录下, 同时删除B服务器/tmp/work ...

  3. HackerRank# Candies

    原题地址 LeetCode上也有这道题,直接扫一遍就行了,连数组都不用开,感觉像是蕴含了某种动归的思想在里面,要不怎么是个动归题呢 代码: #include <cmath> #includ ...

  4. spring配置tomcat jdbc pool数据库连接池

    <bean id="sqliteDataSource" class="org.apache.tomcat.jdbc.pool.DataSource" de ...

  5. uva 11995 判别数据类型

    Problem I I Can Guess the Data Structure! There is a bag-like data structure, supporting two operati ...

  6. uva 11916 解模方程a^x=b (mod n)

      Emoogle Grid  You have to color an M x N ( 1M, N108) two dimensional grid. You will be provided K  ...

  7. 【shell】shell编程(二)-运算符

    上篇我们学会了如何使用及定义变量.按照尿性,一般接下来就该学基本数据类型的运算了. 没错,本篇就仍是这么俗套的来讲讲这无聊但又必学的基本数据类型的运算了. 基本数据类型运算 操作符 符号 语义 描述 ...

  8. 关于gcc内置函数和c隐式函数声明的认识以及一些推测

    最近在看APUE,不愧是经典,看一点就收获一点.但是感觉有些东西还是没说清楚,需要自己动手验证一下,结果发现需要用gcc,就了解一下. 有时候,你在代码里面引用了一个函数但是没有包含相关的头文件,这个 ...

  9. (7)C#连DB2---oledb方式

    1安装客户端 安装DbVisualizer Free 客户端软件 2编目 用 win+r  输入 db2cmd 启动命令行 要远程操作数据库,首先要进行编目,分三个步骤: 1. 在客户端建立服务器端数 ...

  10. TCP No-Delay

    Nagle 算法 由于TCP中包头的大小是固定的,所以在数据(Payload)大小很小的时候IP报文的有效传输率是很低的,Nagle算法就是将多个即将发送的小段的用户数据,缓存并合并成一个大段数据时, ...