http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741376.html

1、概念

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

2、基本思想

   在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

3、用回溯法解题的一般步骤:

(1)针对所给问题,确定问题的解空间:

首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。

(2)确定结点的扩展搜索规则

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

4、算法框架

(1)问题框架

设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。

(2)非递归回溯框架

   1: int a[n],i;
   2: 初始化数组a[];
   3: i = 1;
   4: while (i>0(有路可走)   and  (未达到目标))  // 还未回溯到头
   5: {
   6:     if(i > n)                                              // 搜索到叶结点
   7:     {   
   8:           搜索到一个解,输出;
   9:     }
  10:     else                                                   // 处理第i个元素
  11:     { 
  12:           a[i]第一个可能的值;
  13:           while(a[i]在不满足约束条件且在搜索空间内)
  14:           {
  15:               a[i]下一个可能的值;
  16:           }
  17:           if(a[i]在搜索空间内)
  18:          {
  19:               标识占用的资源;
  20:               i = i+1;                              // 扩展下一个结点
  21:          }
  22:          else 
  23:         {
  24:               清理所占的状态空间;            // 回溯
  25:               i = i –1; 
  26:          }
  27: }

(3)递归的算法框架

回溯法是对解空间的深度优先搜索,在一般情况下使用递归函数来实现回溯法比较简单,其中i为搜索的深度,框架如下:

   1: int a[n];
   2: try(int i)
   3: {
   4:     if(i>n)
   5:        输出结果;
   6:      else
   7:     {
   8:        for(j = 下界; j <= 上界; j=j+1)  // 枚举i所有可能的路径
   9:        {
  10:            if(fun(j))                 // 满足限界函数和约束条件
  11:              {
  12:                 a[i] = j;
  13:               ...                         // 其他操作
  14:                 try(i+1);
  15:               回溯前的清理工作(如a[i]置空值等);
  16:               }
  17:          }
  18:      }
  19: }
 

五大常用算法之四:回溯法[zz]的更多相关文章

  1. (java)五大常用算法

    算法一:分治法 基本概念 1.把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题--直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并. 2.分治策略是对于一个 ...

  2. 算法之--回溯法-迷宫问题【python实现】

    题目描述 定义一个二维数组N*M(其中2<=N<=10;2<=M<=10),如5 × 5数组下所示: int maze[5][5] = { 0, 1, 0, 0, 0, 0,  ...

  3. 五大常用算法之二:动态规划算法(DP)

    一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本 ...

  4. 马踏棋盘算法递归+回溯法实现 C语言

    r为矩阵的行,c为矩阵的列 将结果输出到当前目录下的results.txt. 结果将给出:1.是否存在路径使马可以按要求走遍所有的方格: 2.解的总数: 3.程序执行的时间: #include< ...

  5. Atitit.软件中见算法 程序设计五大种类算法

    Atitit.软件中见算法 程序设计五大种类算法 1. 算法的定义1 2. 算法的复杂度1 2.1. Algo cate2 3. 分治法2 4. 动态规划法2 5. 贪心算法3 6. 回溯法3 7. ...

  6. 五大常见算法策略之——动态规划策略(Dynamic Programming)

    Dynamic Programming   Dynamic Programming是五大常用算法策略之一,简称DP,译作中文是"动态规划",可就是这个听起来高大上的翻译坑苦了无数人 ...

  7. 实现n皇后问题(回溯法)

    /*======================================== 功能:实现n皇后问题,这里实现4皇后问题 算法:回溯法 ============================= ...

  8. python常用算法(7)——动态规划,回溯法

    引言:从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2    ( n = 1,2     fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数 ...

  9. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

随机推荐

  1. (转载)IDEA新建项目时,没有Spring Initializr选项

    最近开始使用IDEA作为开发工具,然后也是打算开始学习使用spring boot. 看着博客来进行操作上手spring boot,很多都是说 创建一个新项目(Create New Project) 选 ...

  2. ASP.NET Core 中的依赖注入

    目录 什么是依赖注入 ASP .NET Core 中使用依赖注入 注册 使用 释放 替换为其它的 Ioc 容器 参考 什么是依赖注入 软件设计原则中有一个依赖倒置原则(DIP),为了更好的解耦,讲究要 ...

  3. Elastic Kibana - Install as windows service

    #1 通过windows sc 服务命令安装 sc create "Kibana661" binPath= "{path}\kibana.bat" depend ...

  4. The servlets named [create_subscription] and [servlet.create] are both mapped to the url-pattern [/create] which is not permitted [duplicate]

    原因,代码中在public前已经有了默认的配置路径: 如: @WebServlet("/ShowUser")public class ShowUser extends HttpSe ...

  5. EF面试题

    为什么用EF而不用原生的Ado.Net? 1.极大的提高开发效率:EF是微软自己的产品,跟VS拉法集成度比较好,开发中代码都是强类型的, xiefl代码效率非常高,自动化程度非常高,命令式的编程. 2 ...

  6. [javaEE] response实现图片下载

    在Servlet中的doGet()方法中 获取FileInputStream对象,new出来,构造参数:String的文件路径 得到文件路径,调用this.getServletContext().ge ...

  7. [javaSE] GUI(鼠标事件)

    调用Button对象的addMouseListener方法,参数:MouseListener对象,这个类是个接口,需要实现以下方法 mouseClicked mousePressed mouseRel ...

  8. 三:SQL server基础

    /一:创建数据库/ use master if exists (select * from sysdatabases where name='数据库名称') drop database 数据库名称 - ...

  9. Java8增强的Map集合

    Map集合简介 Map用于保存具有映射关系的数据,因此Map集合里保存着两组值,一组值用于保存Map里的key,另外一组用于保存Map里的vlaue,key和value都可以是任何引用类型的数据. M ...

  10. js串结构

    朴素匹配算法 //S 主串 T 模式串 //匹配失败,回溯 i = i - j + 1 j = 0 //匹配成功,返回位置 i - j function indexOf(S,T,pos = 0){ l ...