Google发布机器学习平台Tensorflow游乐场~带你玩神经网络(转载)
Google发布机器学习平台Tensorflow游乐场~带你玩神经网络
昨天,Google发布了Tensorflow游乐场。Tensorflow是Google今年推出的机器学习开源平台。而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理。今天,就让硅谷周边带你一起去Tensorflow游乐场快乐地玩耍吧!
昨天,Google深度学习部门Google Brain的掌门人,也是Google里受万众景仰的神级别工程师Jeff Dean,在Google Plus上发布了Tensorflow游乐场的消息:
于是小伙伴们都十分激动地去Tensorflow的网站上玩神经网络了!游乐场的地址是:http://playground.tensorflow.org。让我们快点一起去看看游乐场里有哪些好玩的东东吧。
一打开网站,就看见上面的标语:
“在你的浏览器中就可以玩神经网络!不用担心,怎么玩也玩不坏哦!”
这简直太令人振奋了!面对这么多可以随便点的按钮,咱们从哪儿开始呢?
首先让我们来看看数据。在这个游乐场中,我们有4种不同形态的数据可以玩:
每组数据,都是不同形态分布的一群点。每一个点,都与生俱来了2个特征:x1和x2,表示点的位置。而我们数据中的点有2类:橙色和蓝色。我们的神经网络的目标,就是通过训练,知道哪些位置的点是橙色、哪些位置的点是蓝色。
如果橙色是橙子,蓝色是蓝莓。假设我们有2000个散落在各处的橙子和蓝莓。前1000个,我们知道坐标(1,1)的是蓝莓,(2,2)的是橙子,(0.5,0.5)的是蓝莓等等。我们要用这些信息来训练我们的神经网络,让它能够准确地预测出后1000个哪些是橙子、哪些是蓝莓。
看上面的4组数据,我们会发现,前3中都能相对简单地区分开,而最后一组螺旋数据会是最难的。
Tensorflow游乐场中的数据十分灵活。我们可以调整noise(干扰)的大小,还可以改变训练数据和测试数据的比例多少。下图是不同noise的数据分布。
当我们把每一个数据点的信息喂给机器学习系统时,我们需要做feature extraction,也就是特征提取。如果我们真的是在区分蓝莓和橙子的话,大小、颜色等等都会是我们的特征。而这里,每一个点都有x1和x2两个特征。除此之外,由这两个特征还可以衍生出许多其他特征:
抽象来说,我们的机器学习classifier(分类器)其实是在试图画一条或多条线。如果我们能够100%正确地区分蓝色和橙色的点,蓝色的点会在线的一边,橙色的会在另一边。
上面这些图其实非常的直观。第一张图中,如果x1作为我们的唯一特征,我们其实就是在画一条和x1轴垂直的线。当我们改变参数时,其实就是在将这条线左右移动。其他的特征也是如此。
很容易可以看出,我们需要智能地结合这其中一种或多种的特征,才能够成功地将蓝色点和橙色点分类。这样的feature extraction,其实往往是机器学习应用中最难的部分。好在我们有神经网络,它能够帮我们完成大部分的任务。
如果我们选定x1和x2作为特征,我们神经网络的每一层的每个神经元,都会将它们进行组合,来算出结果:
而下一层神经网络的神经元,会把这一层的输出再进行组合。组合时,根据上一次预测的准确性,我们会通过back propogation给每个组合不同的weights(比重)。这里的线越粗,就表示比重越大:
下面就让我们用最难的螺旋形数据,来试试这个神经网络的表现吧!
在神经网络出现前,我们往往会竭尽所能地想出尽可能好的特征,把它们全都喂给系统。而系统会是个十分浅的系统,往往只有一层。用这样的方法来完成分类。
让我们先来实验传统的方法。在这里,我们将所有能够想到的7个特征都输入系统,并选择只有1层的神经网络:
最后的结果是这样的,可以看出我们的单层神经系统几乎完美地分离出了橙色点和蓝色点:
接下来,让我们来体验神经网络真正的魔法。神经网络最大的魔力,就在于我们根本不需要想出各种各样的特征,用来输入给机器学习的系统。我们只需要输入最基本的特征x1, x2, 只要给予足够多层的神经网络和神经元,神经网络会自己组合出最有用的特征。
在这次试验中,我们只输入x1, x2,而选择1个6层的,每层有8个神经元的神经网络:
最后的结果是这样的。我们发现,通过增加神经元和神经网络的层数,即使没有输入许多特征,我们也能够成功地分类:
神经网络的伟大之处就在于此。当我们在解决分类橙色点和蓝色点这样的简单问题时,想出额外的特征似乎并不是难事。但是,当我们要处理的问题越来越复杂,想出有用的特征就变成了最最困难的事。比如说,当我们需要识别出哪张图片是猫,哪张图片是狗时,哪些特征是真正有效的呢?
而当我们有了神经网络,我们的系统自己就能学习到哪些特征是有效的、哪些是无效的,这就大大提高了我们解决复杂机器学习问题的能力,简直是太酷啦!
看了以上的文章,你是不是对神经网络有了更直观的认识呢?好奇的小伙伴们,欢迎去http://playground.tensorflow.org/自己试试看,真的非常好玩!
作者简介
硅谷周边,本科毕业于Carnegie Mellon University(卡耐基梅隆大学),主修电子与计算机工程和机器人。先后在苹果(Macintosh Systems, iPod)和Google(Android, Google Glass)工作。现在是Google的一名软件工程师。
|
Google发布机器学习平台Tensorflow游乐场~带你玩神经网络(转载)的更多相关文章
- Google发布机器学习术语表 (包括简体中文)
Google 工程教育团队已经发布了多语种的 Google 机器学习术语表,该术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义.语言版本包括西班牙语,法语,韩语和简体中文. 查 ...
- 机器学习与Tensorflow(4)——卷积神经网络与tensorflow实现
1.标准卷积神经网络 标准的卷积神经网络由输入层.卷积层(convolutional layer).下采样层(downsampling layer).全连接层(fully—connected laye ...
- 机器学习与Tensorflow(5)——循环神经网络、长短时记忆网络
1.循环神经网络的标准模型 前馈神经网络能够用来建立数据之间的映射关系,但是不能用来分析过去信号的时间依赖关系,而且要求输入样本的长度固定 循环神经网络是一种在前馈神经网络中增加了分亏链接的神经网络, ...
- Tensorflow游乐场
昨天,Google发布了Tensorflow游乐场.Tensorflow是Google今年推出的机器学习开源平台.而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图 ...
- TensorFlow实现与优化深度神经网络
TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...
- Google发布跨云Serverless管理平台Knative
企业只要使用由Google与Pivotal.IBM.红帽和SAP等企业共同开发的跨云Serverless管理平台Knative,就能在支持Kubernetes的云平台上自由的迁移工作负载,无论是跨私有 ...
- 一站式机器学习平台TI-ONE是什么?——云+未来峰会开发者专场回顾
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 背景:5月23-24日,以“焕启”为主题的腾讯“云+未来”峰会在广州召开,广东省各级政府机构领导.海内外业内学术专家.行业大咖及技术大牛等在 ...
- Windows ML,系统内置的机器学习平台初探
人工智能现在很火,虽然最近风头隐隐有被区块链盖过,但仍是未来技术转型的首选方向之一.作为AI核心的机器学习,目前也进化到了可以基于平台自动训练模型的地步,例如Azure Machine Learnin ...
- 机器学习入门 - Google的机器学习速成课程
1 - MLCC 通过机器学习,可以有效地解读数据的潜在含义,甚至可以改变思考问题的方式,使用统计信息而非逻辑推理来处理问题. Google的机器学习速成课程(MLCC,machine-learnin ...
随机推荐
- poj_1988 并查集
题目大意 开始有N堆砖块,编号为1,2....N,每堆都只有一个.之后可以进行两种操作: (1)M X Y 将编号为X的砖块所在的那堆砖拿起来放到编号为Y的砖块所在的堆上: (2)C X 查询编号为X ...
- 如何理解精通PHP ?
「精通 PHP」可以理解为以下三个: 精通「PHP 解析器 精通「PHP 语法.函数(这门语言) 精通「PHP 项目开发 1 精通「PHP 解析器」 可以从这里开始学习: PHP核心:骇客指南 :ht ...
- 我觉得epoll和select最大的区别
最近在用epoll,网速资料很多,大家都说epoll和select的区别比较大,而且select要不停遍历所有的fd,效率要低,而且fd有限制. 但是我认为二者最大的区别在于 先看代码 while ( ...
- 【文智背后的奥秘】系列篇——分布式爬虫之WebKit
版权声明:本文由文智原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/139 来源:腾云阁 https://www.qclou ...
- 禁止同一条ajax请求重复发出的方法
在项目中,遇到的问题是: 四个tab发送四个不同的请求,当用户连续在不同的按钮之间来回切换时,会出现不清楚那条数据是需要展示的的问题,和当连续点击同一个按钮时,基本同时返回的数据会全都展示出来的问题. ...
- java的this表示当前类还是当前实例?
转自:http://www.runoob.com/java/java-basic-syntax.html this 表示调用当前实例或者调用另一个构造函数
- mysql如何查询日期的列表?
转自:http://blog.csdn.net/liufei198613/article/details/72643345 select @num:=@num+1,date_format(adddat ...
- linux本机root账户无法登录,但是远程ssh可登录
1.故障状态 a.linux本机root账户无法登录(root和密码无误的情况下也无法登录,但是用远程ssh软件可以登录) b.查看/var/log/secure登录日志(提示无法找到pam_limi ...
- ThinkPHP简单结构介绍!
thinkPHP简单结构介绍: application : 应用 extend:扩展 扩展内库 public:入口文件 index.php 在里面 runtime:缓存文件(里面的文件可以随便删除) ...
- postgresql----ANY/SOME&&ALL
一.ANY/SOME WHERE expression operator ANY (subquery)WHERE expression operator SOME (subquery) 其实ANY和S ...