【bzoj2351】[BeiJing2011]Matrix 二维Hash
题目描述
给定一个M行N列的01矩阵,以及Q个A行B列的01矩阵,你需要求出这Q个矩阵哪些在原矩阵中出现过。
所谓01矩阵,就是矩阵中所有元素不是0就是1。
输入
输入文件的第一行为M、N、A、B,参见题目描述。
接下来M行,每行N个字符,非0即1,描述原矩阵。
接下来一行为你要处理的询问数Q。
接下来Q个矩阵,一共Q*A行,每行B个字符,描述Q个01矩阵。
输出
你需要输出Q行,每行为0或者1,表示这个矩阵是否出现过,0表示没有出现过,1表示出现过。
样例输入
3 3 2 2
111
000
111
3
11
00
11
11
00
11
样例输出
1
0
1
题解
二维Hash
因为一维Hash就是一维前缀和,所以二维Hash就是二维前缀和——GXZlegend
事实上的确是这样的,维护矩阵 $(1...n,1...m)$ 的Hash值的方法与二维前缀和类似,利用容斥关系推出。其中,设行列两个base,然后乘上base相加减即可。
由于每次询问的 $a$ 和 $b$ 相同,因此预处理出所有原矩阵的 $a × b$ 的子矩阵的Hash值,存到哈希表中,查询时直接找是否有相等的Hash值即可。
注意:行列base不能相同(不然沿主对角线反转Hash值不变);01串的Hash不能以0和1作为取值,应以'0'和'1'作为取值。
具体看代码吧。
时间复杂度 $O(nm+qab)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 1010
#define M 12345678
using namespace std;
typedef unsigned long long ull;
struct data
{
int head[M] , next[N * N] , tot;
ull v[N * N];
inline void insert(ull x)
{
if(!head[x % M]) head[x % M] = ++tot , v[tot] = x;
else
{
int i;
for(i = head[x % M] ; next[i] ; i = next[i])
if(v[i] == x)
return;
next[i] = ++tot , v[tot] = x;
}
}
inline int count(ull x)
{
int i;
for(i = head[x % M] ; i ; i = next[i])
if(v[i] == x)
return 1;
return 0;
}
}mp;
ull v[N][N] , w[N][N];
char str[N];
int main()
{
int n , m , a , b , q , i , j;
ull c = 1 , d = 1;
scanf("%d%d%d%d" , &n , &m , &a , &b);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= m ; j ++ )
v[i][j] = str[j] + v[i][j - 1] * 233 + v[i - 1][j] * 2333 - v[i - 1][j - 1] * 233 * 2333;
}
for(i = 1 ; i <= b ; i ++ ) c *= 233;
for(i = 1 ; i <= a ; i ++ ) d *= 2333;
for(i = a ; i <= n ; i ++ )
for(j = b ; j <= m ; j ++ )
mp.insert(v[i][j] - v[i][j - b] * c - v[i - a][j] * d + v[i - a][j - b] * c * d);
scanf("%d" , &q);
while(q -- )
{
for(i = 1 ; i <= a ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= b ; j ++ )
w[i][j] = str[j] + w[i][j - 1] * 233 + w[i - 1][j] * 2333 - w[i - 1][j - 1] * 233 * 2333;
}
printf("%d\n" , mp.count(w[a][b]));
}
return 0;
}
【bzoj2351】[BeiJing2011]Matrix 二维Hash的更多相关文章
- BZOJ2351[BeiJing2011]Matrix——二维hash
题目描述 给定一个M行N列的01矩阵,以及Q个A行B列的01矩阵,你需要求出这Q个矩阵哪些在原矩阵中出现过.所谓01矩阵,就是矩阵中所有元素不是0就是1. 输入 输入文件的第一行为M.N.A.B,参见 ...
- bzoj 2351 [BeiJing2011]Matrix——二维哈希
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2351 就是先把每行单独从左到右扫着乘一个 b1 哈希起来,然后再按列从上往下乘一个 b2 哈 ...
- BZOJ.2462.[BeiJing2011]矩阵模板(二维Hash)
题目链接 序列上的Hash和前缀和差不多,二维Hash也和二维前缀和差不多了. 预处理大矩阵所有r*c的小矩阵hash值,再对询问的矩阵Hash. 类比于序列上\(s[r]-s[l-1]*pow[r- ...
- UVA 11019 Matrix Matcher(二维hash + 尺取)题解
题意:在n*m方格中找有几个x*y矩阵. 思路:二维hash,总体思路和一维差不太多,先把每行hash,变成一维的数组,再对这个一维数组hash变成二维hash.之前还在想怎么快速把一个矩阵的hash ...
- BZOJ2462[Beijing2011]矩阵模板(二维Hash)
二维矩阵匹配问题,至今不知道Q的范围是多少,反正是要求做到读入复杂度. 二维Hash:就是一维的等效拓展,注意两维的Base不能相同. 其余就是一维Hash和二维前缀和的结合,可以自然溢出,据说概率很 ...
- UVA 11019 Matrix Matcher ( 二维字符串匹配, AC自动机 || 二维Hash )
题目: 传送门 题意: 给你一个 n * m 的文本串 T, 再给你一个 r * c 的模式串 S: 问模式串 S 在文本串 T 中出现了多少次. 解: 法一: AC自动机 (正解) 670ms 把模 ...
- BZOJ 1567 Blue Mary的战役地图(二维hash+二分)
题意: 求两个矩形最大公共子正方形.(n<=50) 范围这么小可以枚举子正方形的边长.那么可以对这个矩形进行二维hash,就可以在O(1)的时候求出任意子矩形的hash值.然后判断这些正方形的h ...
- 二维hash
题目描述 给出一个n * m的矩阵.让你从中发现一个最大的正方形.使得这样子的正方形在矩阵中出现了至少两次.输出最大正方形的边长. 输入描述: 第一行两个整数n, m代表矩阵的长和宽: 接下来n行,每 ...
- 牛客练习赛1 矩阵 字符串二维hash+二分
题目 https://ac.nowcoder.com/acm/contest/2?&headNav=www#question 解析 我们对矩阵进行二维hash,所以每个子矩阵都有一个额hash ...
随机推荐
- 20155327 实验一《Java开发环境的熟悉》实验报告
实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 实验知识点 JVM.JRE.JDK的安装位置与区别: 命令行运行javac:jav ...
- 自己在UWP程序上调用usb转串口的路程
之前一直是在普通的framework环境下写串口,使用的类为 SerialPort 这个类大家可能比较熟悉.但是在UWP的开发里,使用的是 SerialDevice 这个类,是不一样的. 1. 清单文 ...
- sql语句-6-更新数据
- Oracle下如何设置 log_archive_dest
一:存在 DB_RECOVERY_FILE_DEST 时,如何设置 LOG_ARCHIVE_DEST: SQL> archive log listデータベース・ログ・モード アーカイブ・モード自 ...
- Mysql优化分页
背景: 库里面有张表,日增数据量百万条: 之前查询: SELECT * FROM `res_battery_data_history` LIMIT 1797000,10;
- L012-linux系统文件属性知识深入详解小结
L012-linux系统文件属性知识深入详解小结 最近的学习重点不在这上面,所以更新的比较慢,再加上母亲住院,感情问题,一系列吧,愿快点度过这黑色的4月份,希望我能在5月份阳光起来,加油! 回归正题 ...
- Mysql取消SSH链接和恢复SSH链接
取消SSH链接//键入密码,链接上mysql mysql -u root -p USE MYSQL; GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIF ...
- rocketmq Lock failed,MQ already started -c参数
今天部署rocketmq集群时一台机器部署一个master 和slave,slave部署总是失败,通过查看日志显示下面的错误 java.lang.RuntimeException: Lock fail ...
- 3.0 zookeeper的集群介绍、搭建、环境、安装
zookeeper是本身是一种分布式协调服务(英文意思动物园园长因为Hadoop就是一个动物园,storm.hadoop.kafkaka.hbaser都是基于zookeeper开发的) 原理:Zook ...
- web _service 接口
1.WebService 就是 http请求 post接口 2.需要加 请求头信息 Content-Type: text/xml; 3.需要把占位符换成需要的字符串 webservice接口可以 ...