图论题目练得比较少,发一道spfa的板子题目~

题目:P1144

题目描述

给出一个N个顶点M条边的无向无权图,顶点编号为1~N。问从顶点1开始,到其他每个点的最短路有几条。

输入输出格式

输入格式:

输入第一行包含2个正整数N,M,为图的顶点数与边数。

接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。

输出格式:

输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可。如果无法到达顶点i则输出0。

输入输出样例

输入样例#1:

5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
输出样例#1:

1
1
1
2
4

说明

1到5的最短路有4条,分别为2条1-2-4-5和2条1-3-4-5(由于4-5的边有2条)。

对于20%的数据,N ≤ 100;

对于60%的数据,N ≤ 1000;

对于100%的数据,N<=1000000,M<=2000000。

Solution:

一眼数据范围,吓得就是一滚~,关键是还有重边,而且spfa只能记录单点到其它点的一条最短路,这题又要输出最短路个数取模,让人琢磨不透。So,默默的看看标签吧,普及+提高,嗯貌似不是很难,看下解题标签:spfa,bfs,图论,最短路。OK,果然还是要用到spfa,我们关键是要想到如何去处理重边和最短路计数。于是乎,我们先写一下spfa的模板,然后再来思考,不难发现:边权都为1,对于重边在spfa中会进行多次才到下一个点,所以路径数会记录下来,而且在spfa的松弛操作中由于边权均为1所以每个点只会松弛一次,于是乎在跑spfa时我们只需判断dis[v]==dis[u]+1是否成立,若成立,对于ans就加上到u点的边的条数再取模。这样这道题就完美的解决了。

代码:

 #include<bits/stdc++.h>
#pragma GCC optimize(2)
using namespace std;
#define ll long long
#define il inline
#define mod 100003
#define N 1000005
#define inf 233333333
int n,m,h[N],dis[N],cnt,ans[N];
bool vis[N];
queue<int>q;
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
struct edge{
int to,net;
}e[N<<];
il void add(int u,int v){e[++cnt].to=v;e[cnt].net=h[u];h[u]=cnt;}
il void spfa(int s)
{
for(int i=;i<=n;i++)dis[i]=inf;
q.push(s);
vis[s]=;ans[s]=;dis[s]=;
int u,v;
while(!q.empty())
{
u=q.front();
q.pop();vis[u]=;
for(int i=h[u];i;i=e[i].net){
v=e[i].to;
if(dis[u]+<dis[v]){
dis[v]=dis[u]+;
ans[v]=ans[u];
if(!vis[v])vis[v]=,q.push(v);
}
else if(dis[v]==dis[u]+)ans[v]=(ans[v]+ans[u])%mod;
}
}
}
int main()
{
n=gi(),m=gi();
int u,v;
for(int i=;i<=m;i++)
{
u=gi(),v=gi();
add(u,v);add(v,u);
}
spfa();
for(int i=;i<=n;i++)printf("%d\n",ans[i]);
return ;
}

思考:

由这道题我们想到,如果对与任意一个有向无环且带权的图,需要输出规定原点到其它点的最短路径条数,这样应该怎么去做呢?

我们可以先跑一遍spfa,再进行DAG+DP(或者记忆化搜索),也可以直接两遍spfa跑过(YZK大佬告诉我的方法,仔细想想思路都差不多,原理还是DP),于是乎,论DP的重要性,当然也可以看出spfa的应用有多广泛。。。

推广题:POJ3463(解题报告)

洛谷P1144 最短路计数 及其引申思考的更多相关文章

  1. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  2. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  3. 洛谷——P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  4. 洛谷 P1144 最短路计数 题解

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 输入格式 第一行包含\(2\)个正 ...

  5. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  6. 洛谷 P1144 最短路计数

    传送门:https://www.luogu.org/problemnew/show/P1144 这虽然是一道普及+的题,然而我发现我现在还没做过,这也就直接导致我今天模拟T2只杠了个暴力分…… 那这道 ...

  7. 洛谷P1144——最短路计数

    题目:https://www.luogu.org/problemnew/show/P1144 spfa跑最短路的同时记录cnt数组表示到达方案数. 代码如下: #include<iostream ...

  8. 洛谷P1144 最短路计数【堆优化dijkstra】

    题目:https://www.luogu.org/problemnew/show/P1144 题意:问1到各个节点的最短路有多少条. 思路:如果松弛的时候发现是相等的,说明可以经过该点的最短路径到达当 ...

  9. 洛谷 P1144 最短路计数 Label:水

    题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行 ...

随机推荐

  1. STM32L476的RTC使用问题记录

    1. 在使用RTC的时间戳,从字面意思是,PC13的上升沿可以触发时间戳的中断函数 /*##-1- Configure the Time Stamp peripheral ############## ...

  2. Spring学习(一)-----Spring 模块详解

    官方下载链接:http://repo.spring.io/release/org/springframework/spring/ Spring 模块详解: Core 模块 spring-beans-3 ...

  3. request,logging,ConfigParser——接口框架

    做一个将参数和用例分开放置,并且输出log的接口测试框架 我的框架如下所示 Log文件用来设置log输出文件,需要时可以在用例内调用输出,config用来填写一切需要的参数信息,jiekou_post ...

  4. axios封装(一)基础配置

    axios 是目前流行的Promise网络请求库,在浏览器端他通过 xhr方式创建ajax请求.在node环境下,通过 http 库创建网络请求. axios 提供了丰富的配置,这里讲一讲我在工作中通 ...

  5. 阿里云服务器Centos上Apache安装SSL证书配置Https

    首先我们先去阿里云申请一个免费的SSL证书(https://common-buy.aliyun.com/?spm=5176.7968328.1266638..5e971232BzMSp5&co ...

  6. idea compare功能 之一次bug修复

    一次bug修复 最近开发完了一套单点系统,jenkins打包上传到服务器就出问题, 可以启动但是不能正常工作. 首先想到的是环境不一样, 于是把jenkins的jdk和maven都调整和本机大版本相同 ...

  7. 【转】lvs、nginx、haproxy转发模式优缺点总结

    原文地址: https://yq.aliyun.com/ziliao/78374 一.LVS转发模式 LVS是章文嵩博士写的一个工作于四层的高可能性软件.不像后两者支持七层转发,不过也正因为其简单,所 ...

  8. 原生js和jquey获取窗口宽高,滚动条,鼠标位置总结

    JQuery获取浏览器窗口的可视区域高度和宽度,滚动条高度   alert($(window).height()); //浏览器时下窗口可视区域高度 alert($(document).height( ...

  9. Sorting a Three-Valued Sequence(三值排序)

    Description 排序是一种很频繁的计算任务.现在考虑最多只有三值的排序问题.一个实际的例子是,当我们给某项竞赛的优胜者按金银铜牌序的时候. 在这个任务中可能的值只有三种1,2和3.我们用交换的 ...

  10. Android开发第二阶段(2)

    昨天:总结了第一阶段的开发经验 今天:学习了一下java中对事件处理这块的初步了解比如设置监听器等 明天:我会走进我们的代码去看看相关的一些知识.