hdu1224

Free DIY Tour

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 3656    Accepted Submission(s): 1180

Problem Description
Weiwei is a software engineer of ShiningSoft. He has just excellently fulfilled a software project with his fellow workers. His boss is so satisfied with their job that he decide to provide them a free tour around the world. It's a good chance to relax themselves.
To most of them, it's the first time to go abroad so they decide to make a collective tour.



The tour company shows them a new kind of tour circuit - DIY circuit. Each circuit contains some cities which can be selected by tourists themselves. According to the company's statistic, each city has its own interesting point. For instance, Paris has its
interesting point of 90, New York has its interesting point of 70, ect. Not any two cities in the world have straight flight so the tour company provide a map to tell its tourists whether they can got a straight flight between any two cities on the map. In
order to fly back, the company has made it impossible to make a circle-flight on the half way, using the cities on the map. That is, they marked each city on the map with one number, a city with higher number has no straight flight to a city with lower number. 



Note: Weiwei always starts from Hangzhou(in this problem, we assume Hangzhou is always the first city and also the last city, so we mark Hangzhou both 1 andN+1), and its interesting point is always 0.



Now as the leader of the team, Weiwei wants to make a tour as interesting as possible. If you were Weiwei, how did you DIY it?
 
Input
The input will contain several cases. The first line is an integer T which suggests the number of cases. Then T cases follows.

Each case will begin with an integer N(2 ≤ N ≤ 100) which is the number of cities on the map.

Then N integers follows, representing the interesting point list of the cities.

And then it is an integer M followed by M pairs of integers [Ai, Bi] (1 ≤ i ≤ M). Each pair of [Ai, Bi] indicates that a straight flight is available from City Ai to City Bi.
 
Output
For each case, your task is to output the maximal summation of interesting points Weiwei and his fellow workers can get through optimal DIYing and the optimal circuit. The format is as the sample. You may assume that there is only one optimal circuit. 



Output a blank line between two cases.
 
Sample Input
2
3
0 70 90
4
1 2
1 3
2 4
3 4
3
0 90 70
4
1 2
1 3
2 4
3 4
 
Sample Output
CASE 1#
points : 90
circuit : 1->3->1 CASE 2#
points : 90
circuit : 1->2->1
 
Author
JGShining(极光炫影)
 

#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stdlib.h"
#include"math.h"
#define M 40
#define eps 1e-10
#define inf 99999999
#define mod 1000000000
using namespace std;
int n,path[111][111],dis[111][111],G[111][111];
void floyd()
{
int i,j,k;
for(i=1;i<=n+1;i++)
{
for(j=1;j<=n+1;j++)
{
dis[i][j]=G[i][j];
path[i][j]=-1;
}
}
for(k=1;k<=n+1;k++)
{
for(i=1;i<=n+1;i++)
{
for(j=1;j<=n+1;j++)
{
if(dis[i][j]>dis[i][k]+dis[k][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=k;
} }
}
}
}
void dfs(int i,int j)//中序遍历输出路径
{
int k;
k=path[i][j];
if(k==-1)
return ; dfs(i,k);
printf("%d->",k);
dfs(k,j); }
int main()
{
int i,T,a[111],m,j,kk=1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
a[n+1]=a[1];
scanf("%d",&m);
for(i=1;i<=n+1;i++)
{
for(j=1;j<=n+1;j++)
{
G[i][j]=inf;
}
G[i][i]=0;
}
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
G[u][v]=-a[v];
} floyd();
if(kk!=1)
printf("\n");
printf("CASE %d#\n",kk++);
printf("points : %d\n",-dis[1][1+n]);
printf("circuit : 1->");
dfs(1,1+n);
printf("1\n"); }
return 0;
}

Floyd算法并输出路径的更多相关文章

  1. Floyd算法——保存路径——输出路径 HDU1385

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1385 参考 http://blog.csdn.net/shuangde800/article/deta ...

  2. SPFA和FLOYD算法如何打印路径

    早晨碰到了一题挺裸的最短路问题需要打印路径:vijos1635 1.首先说说spfa的方法: 其实自己之前打的最多的spfa是在网格上的那种,也就是二维的 一维的需要邻接表+queue 以及对于que ...

  3. ZOJ 1456 Minimum Transport Cost(Floyd算法求解最短路径并输出最小字典序路径)

    题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of ...

  4. Floyd最短路(带路径输出)

    摘要(以下内容来自百度) Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似. 该算法名称以创始人之一.1978年图灵奖获得者. ...

  5. URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)

    https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...

  6. [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径

    相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...

  7. Codefroces Gym101572 I.Import Spaghetti-有向图跑最小环输出路径(Floyd)

    暑假学的很多东西,现在都忘了,补这道题还要重新学一下floyd,有点难过,我暑假学的东西呢??? 好了,淡定,开始写题解. 这个题我是真的很难过啊,输入简直是有毒啊(内心已经画圈诅咒出题人无数次了.. ...

  8. 最小路径算法(Dijkstra算法和Floyd算法)

    1.单源点的最短路径问题:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径. 我们用一个例子来具体说明迪杰斯特拉算法的流程. 定义源点为 0,dist[i]为源点 0 到顶点 i 的最短路径 ...

  9. HD1385Minimum Transport Cost(Floyd + 输出路径)

    Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

随机推荐

  1. 【这特么是个坑。。。】iOS 10.3下解决Charles抓包ssl证书信任问题

    针对近期iOS 10.3以上的系统charles抓https信任问题 前言 最近iPhone系统更新到ios 10.3后,在公司里用Charles抓包竟然出现了一些问题,https的请求都会失败,提示 ...

  2. Qt学习之路(tip): parent参数

    这是一篇很简单的文章,仅仅是用来说明一下一个参数的作用,因此我把它写成了tip,而不是接下来的17.   程序写的多了,你会发现几乎所有的Qt类的构造函数都会有一个parent参数.这个参数通常是QO ...

  3. 关于Cocos2d-x物理引擎用到的类和使用

    其实就是这三类PhysicsWorld类,PhysicsBody类,PhysicsShape类. 1.PhysicsWorld类 PhysicsWorld对象代表Cocos2d-x中的物理世界,这个世 ...

  4. GAN(Generative Adversarial Nets)的发展

    GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度慢 3.resolution太小,大了无语义信息 4.无reference ...

  5. 各个层次的gcc警告

    http://blog.csdn.net/lizzywu/article/details/9419145 各个层次的gcc警告从上到下覆盖 变量(代码)级:指定某个变量警告 int a __attri ...

  6. 【转】【VC】VC程序运行时间测试函数

    1:Sleep函数 使用: sleep(1000),在Windows和Linux下1000代表的含义并不相同,Windows下的表示1000毫秒,也就是1秒钟: Linux下表示1000秒,Linux ...

  7. windows 批处理文件中引用日期

    参见:http://blog.csdn.net/iw1210/article/details/39313677 %DATE%输出的是: yyyy/mm/dd 星期* (例如:2008/12/18 星期 ...

  8. h264 i p 帧特点

     1.爱无铭(47530789) 2014-2-13 17:07:27 I帧只有intra p帧有inter和intra:B帧一般只用inter  2.  庐舍闲士(361389535) 2014-2 ...

  9. markdown 转 pdf 方法

    (1)Mou: (macosx 系统下的markdown编辑器,转pdf完美,推荐) http://25.io/mou/ (2)Chrome 打印 (打印得很好看,缺点是转好的pdf上的文字有时候不能 ...

  10. 刚刚完成了在vs2013中通过 ef连接mysql数据库的工作。感觉没有想象中的简单。试了n次终于成功。故记录成功的方法,希望可以帮到大家

    分两种情况,如果你是用entity framework 5.0的时候 mysql-connector-net的版本不是很重要. MySQL For VisualStudio的版本也不重要 (这个不装就 ...