题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2750

枚举每一个起点,通过该边的子树中有多少节点就知道本次它被经过几次了;

  因为同一起点到该边的起点的最短路唯一。

但其实不是!就在于可以有长度相等的最短路!

所以暴力通过dis[cur]+edge[ i ].w==dis[ v ]?来判断该边是否在当前最短路中。

记录从根到该边起点有多少路径时要保证指向它的点都已赋过值,所以拓扑一下。

别忘了到处写上那个暴力判断!

关于rd,别忘了赋初值。只要每次赋rd[cur]=0就行了。其它会在更新dis时赋好。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define ll long long
using namespace std;
const int N=,M=,mod=1e9+;
int n,m,head[N],pre[N],dis[N],xnt,rd[N];
ll d1[N],d2[N],ans[M];
bool in[N];
queue<int> r;
struct Edge{
int next,from,to,w;
Edge(int n=,int f=,int t=,int w=):next(n),from(f),to(t),w(w) {}
}edge[M];
void spfa(int cur)
{
memset(dis,,sizeof dis);
queue<int> q;
dis[cur]=;q.push(cur);in[cur]=;rd[cur]=;//
while(q.size())
{
int k=q.front();q.pop();in[k]=;
for(int i=head[k],v;i;i=edge[i].next)
{
if(dis[k]+edge[i].w==dis[v=edge[i].to])rd[v]++;
if(dis[k]+edge[i].w<dis[v=edge[i].to])
{
rd[v]=;
dis[v]=dis[k]+edge[i].w;
if(!in[v])q.push(v),in[v]=;
}
}
}
}
void dp(int cur)
{
d2[cur]=;
for(int i=head[cur],v;i;i=edge[i].next)
if(dis[v=edge[i].to]==dis[cur]+edge[i].w)
{
if(!d2[v=edge[i].to])dp(v);
(d2[cur]+=d2[v])%=mod;
}
}
void tp(int cur)
{
r.push(cur);
for(int i=head[cur],v;i;i=edge[i].next)
if(dis[v=edge[i].to]==dis[cur]+edge[i].w)//
{
rd[v=edge[i].to]--;
if(!rd[v])tp(v);
}
}
void solve(int cur)
{
// printf("cur=%d\n",cur);
memset(d1,,sizeof d1);
memset(d2,,sizeof d2);
while(r.size())r.pop();
spfa(cur);
tp(cur);
dp(cur);
d1[cur]=;
while(r.size())
{
int k=r.front();r.pop();
for(int i=head[k],v;i;i=edge[i].next)
if(dis[v=edge[i].to]==dis[k]+edge[i].w)
(d1[v]+=d1[k])%=mod;
}
for(int i=,u,v;i<=m;i++)
if(dis[u=edge[i].from]+edge[i].w==dis[v=edge[i].to])//
{
(ans[i]+=d1[u]*d2[v])%=mod;
// printf("from=%d to=%d t=%lld ans=%lld\n",edge[i].from,edge[i].to,d2[edge[i].to],ans[i]);
}
}
int main()
{
scanf("%d%d",&n,&m);int x,y,z;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
edge[++xnt]=Edge(head[x],x,y,z);head[x]=xnt;
}
for(int i=;i<=n;i++)
solve(i);
for(int i=;i<=m;i++)
printf("%lld\n",ans[i]);
return ;
}

bzoj2750最短路计数的更多相关文章

  1. 【SPFA】 最短路计数

    最短路计数 [问题描述]   给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式]   输入第一行包含2个正整数N,M,为图的顶点数与边数. ...

  2. P1144 最短路计数

    P1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶 ...

  3. 洛谷P1144最短路计数题解

    最短路计数 此题还是寻找从1到i点总共有几个最短路且每条边的边长为1,对于这种寻找最短路的个数,我们可以反向搜索,即先用\(SPFA\)预处理出所有点的最短路,然后我们反向记忆化搜索,可以用\(sum ...

  4. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  5. 2018.11.05 NOIP模拟 规避(最短路计数)

    传送门 正难则反. 考虑计算两人相遇的方案数. 先正反跑一遍最短路计数. 然后对于一条在最短路上的边(u,v)(u,v)(u,v),如果(dis(s,u)*2<total&&di ...

  6. 洛谷 P1144 最短路计数 解题报告

    P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...

  7. BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数

    Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...

  8. 1491. [NOI2007]社交网络【最短路计数】

    Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这 ...

  9. 洛谷P1144 最短路计数 及其引申思考

    图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: ...

随机推荐

  1. 无界面Ubuntu服务器搭建selenium+chromedriver+VNC运行环境

    搭建背景 有时候我们需要把基于selenium的爬虫放到服务器上跑的时候,就需要这样一套运行环境,其中VNC是虚拟的显示模式,用于排查定位线上问题以及实时运行情况. 搭建流程 安装虚拟输出设备:sud ...

  2. [javaScript]身份证号信息解析

    之前一直在思考是不是该把工作中一些问题写出来(可能是简单的问题),现在的想法是应该写出来这些简单的问题.虽然工作中可能并没有很多特别难的问题让你去解决,因为公司的招人就是根据你的能力来匹配的嘛. 简单 ...

  3. Java多线程 线程状态及转换 wait sleep yield join

    线程的状态转化关系(1). 新建状态(New):新创建了一个线程对象.(2). 就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法.该状态的线程位于可运行线程池中, ...

  4. HBuilder 获取通讯录

    代码: var content=""; function getCallLog() { try{ plus.contacts.getAddressBook(plus.contact ...

  5. vue中动态添加div

    知识点:vue中动态添加div节点,点击添加,动态生成div,点击删除,删除对应的div,其中数组的长度是动态改变的,如在from表单中应用,直接在提交方法中,获得list,获取所填的元素即可 效果: ...

  6. [笔记] SQL性能优化 - 常用语句(二)

    1.查询CPU开销大的语句 total_worker_time/execution_count AS avg_cpu_cost, plan_handle, execution_count, ( , ( ...

  7. POJ 1014 Dividing(多重背包+二进制优化)

    http://poj.org/problem?id=1014 题意:6个物品,每个物品都有其价值和数量,判断是否能价值平分. 思路: 多重背包.利用二进制来转化成0-1背包求解. #include&l ...

  8. Uva 12304 - 2D Geometry 110 in 1!

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  9. Gradle sync failed: Read timed out

    : Gradle sync started : Gradle sync failed: Read timed out Consult IDE log m s ms) 原因是Gradle下载超时 一.下 ...

  10. Bridge(桥接)

    意图: 将抽象部分与它的实现部分分离,使它们都可以独立地变化. 适用性: 你不希望在抽象和它的实现部分之间有一个固定的绑定关系.例如这种情况可能是因为,在程序运行时刻实现部分应可以被选择或者切换. 类 ...