Problem

For a random variable XX taking integer values between 1 and nn, the expected value of XX is E(X)=∑nk=1k×Pr(X=k)E(X)=∑k=1nk×Pr(X=k). The expected value offers us a way of taking the long-term average of a random variable over a large number of trials.

As a motivating example, let XX be the number on a six-sided die. Over a large number of rolls, we should expect to obtain an average of 3.5 on the die (even though it's not possible to roll a 3.5). The formula for expected value confirms that E(X)=∑6k=1k×Pr(X=k)=3.5E(X)=∑k=16k×Pr(X=k)=3.5.

More generally, a random variable for which every one of a number of equally spaced outcomes has the same probability is called a uniform random variable (in the die example, this "equal spacing" is equal to 1). We can generalize our die example to find that if XX is a uniform random variable with minimum possible value aa and maximum possible value bb, then E(X)=a+b2E(X)=a+b2. You may also wish to verify that for the dice example, if YY is the random variable associated with the outcome of a second die roll, then E(X+Y)=7E(X+Y)=7.

Given: Six nonnegative integers, each of which does not exceed 20,000. The integers correspond to the number of couples in a population possessing each genotype pairing for a given factor. In order, the six given integers represent the number of couples having the following genotypes:

  1. AA-AA
  2. AA-Aa
  3. AA-aa
  4. Aa-Aa
  5. Aa-aa
  6. aa-aa

Return: The expected number of offspring displaying the dominant phenotype in the next generation, under the assumption that every couple has exactly two offspring.

Sample Dataset

1 0 0 1 0 1

Sample Output

3.5
# coding='utf-8'
# method1
def fun(a, b, c, d, e, f):
x1 = 1 * a
x2 = 1 * b
x3 = 1 * c
x4 = 0.75 * d
x5 = 0.5 * e
x6 = 0 * f return sum([x1, x2, x3, x4, x5, x6]) * 2 print fun(16634, 19016, 18660, 17721, 19835, 16233) # method2 input = '16298 16360 18376 16233 18250 19449'
nums = [int(i) for i in input.split(' ')]
es = [0.75*nums[3],0.5*nums[4]]
for i in xrange(3):
es.append(nums[i])
print sum(es)*2

  


13 Calculating Expected Offspring的更多相关文章

  1. SQLSERVER数据库备份操作和还原操作做了什么

    SQLSERVER数据库备份操作和还原操作做了什么 看了这篇文章:还原/备份时做了些什么 自己也测试了一下,下面说的错误日志指的是SQLSERVER ERRORLOG 一般在C:\Program Fi ...

  2. Java8简单的本地缓存实现

    原文出处:lukaseder         Java8简单的本地缓存实现 这里我将会给大家演示用ConcurrentHashMap类和lambda表达式实现一个本地缓存.因为Map有一个新的方法,在 ...

  3. 使用MinGW 编译 iconv 库

    原文链接: http://www.code-by.org/viewtopic.php?f=54&t=166 GNU页面 http://ftp.gnu.org/pub/gnu/libiconv/ ...

  4. Switch-case 内定义变量的问题

    Switch-case 内定义变量的问题 这个问题需要分开讨论,C 语言和 C++ 的标准定义是不同的. C++ int Caset(int a) { switch (a) { case 1: int ...

  5. mockito简单教程

    注:本文来源:sdyy321的<mockito简单教程> 官网: http://mockito.org API文档:http://docs.mockito.googlecode.com/h ...

  6. Eureka的自我保护机制

    最近项目在Kubernetes上使用Eureka遇到一些问题,在网站上找到一篇针对Eureka自我保护机制原理的文章,觉得不错,总结如下: Eureka的自我保护特性主要用于减少在网络分区或者不稳定状 ...

  7. 2014秋C++第5周项目1參考-见识刚開始学习的人常见错误

    课程主页在http://blog.csdn.net/sxhelijian/article/details/39152703,实践要求见http://blog.csdn.net/sxhelijian/a ...

  8. cx_Oracle python模块安装

    1. 需要从oracle网站下载一下两个包 instantclient-basic-linux.x64-11.2.0.4.0.zip instantclient-sdk-linux.x64-11.2. ...

  9. Step-by-step from Markov Process to Markov Decision Process

    In this post, I will illustrate Markov Property, Markov Reward Process and finally Markov Decision P ...

随机推荐

  1. vs2013突然没有代码提示功能了。

    工具->选项->文本编辑器->C++ ->高级->禁用IntelliSense设置 false 然后选确定.

  2. CenOS中的yum配置文件CentOS-Base.repo里面的参数都是何含义? souhu CentOS-Base.repo

    souhu  yum服务器CentOS-Base.repo 将$releasever替换为操作系统版本号 # CentOS-Base.repo # # The mirror system uses t ...

  3. C# winForm 文件拖拽

    控件 AllowDrop属性改为true,并实现它的DragEnter.DragDrop这两个事件. private void lbFilePath_DragEnter(object sender, ...

  4. 错误 1 缺少编译器要求的成员“System.Runtime.CompilerServices.ExtensionAttrib

    错误 1 缺少编译器要求的成员“System.Runtime.CompilerServices.ExtensionAttrib 删除Newtonsoft.Json.dll 引用 ,再重新引用即可. 原 ...

  5. Splunk安装部署基础篇

    Splunk安装(以4.3.4版本为例) 下载splunk软件包,并解压,直接启动即可. --Linux-x86_64.tgz -C /optcd /opt/splunk/bin./splunk st ...

  6. ckplayer的Error #2033:Can not call javascript:ckstyle()解决

    在我们添加多个视频的时候,就会出现这个报错:Error #2033:Can not call javascript:ckstyle(); 但是也不是所有的浏览器都不能正常运行,我这边就是IE10不能正 ...

  7. canvas基础动画示例

    canvas基础动画示例 本文主要用最简单的例子,展示canvas动画效果是如何实现的 动画效果,是一个球绕着一点旋转 const canvas = document.getElementById(' ...

  8. 机器视觉和Tesseract

    机器视觉 从 Google 的无人驾驶汽车到可以识别假钞的自动售卖机,机器视觉一直都是一个应用广 泛且具有深远的影响和雄伟的愿景的领域. 我们将重点介绍机器视觉的一个分支:文字识别,介绍如何用一些 P ...

  9. Spring IO Platform介绍

    为什么要用Spring IO Platform 今天无意间看到了一个关键词:"Spring IO Platform",第一直觉是不是有关于IO方面的框架或者包呢,查了一下,居然是为 ...

  10. JDK静态代理示例代码

    JDK静态代理示例代码 业务接口 接口的实现类 代理类,实现接口,并扩展实现类的功能 1.业务接口 /** * 业务接口 * @author pc * */ public interface User ...