13 Calculating Expected Offspring
Problem
For a random variable XX taking integer values between 1 and nn, the expected value of XX is E(X)=∑nk=1k×Pr(X=k)E(X)=∑k=1nk×Pr(X=k). The expected value offers us a way of taking the long-term average of a random variable over a large number of trials.
As a motivating example, let XX be the number on a six-sided die. Over a large number of rolls, we should expect to obtain an average of 3.5 on the die (even though it's not possible to roll a 3.5). The formula for expected value confirms that E(X)=∑6k=1k×Pr(X=k)=3.5E(X)=∑k=16k×Pr(X=k)=3.5.
More generally, a random variable for which every one of a number of equally spaced outcomes has the same probability is called a uniform random variable (in the die example, this "equal spacing" is equal to 1). We can generalize our die example to find that if XX is a uniform random variable with minimum possible value aa and maximum possible value bb, then E(X)=a+b2E(X)=a+b2. You may also wish to verify that for the dice example, if YY is the random variable associated with the outcome of a second die roll, then E(X+Y)=7E(X+Y)=7.
Given: Six nonnegative integers, each of which does not exceed 20,000. The integers correspond to the number of couples in a population possessing each genotype pairing for a given factor. In order, the six given integers represent the number of couples having the following genotypes:
- AA-AA
- AA-Aa
- AA-aa
- Aa-Aa
- Aa-aa
- aa-aa
Return: The expected number of offspring displaying the dominant phenotype in the next generation, under the assumption that every couple has exactly two offspring.
Sample Dataset
1 0 0 1 0 1
Sample Output
3.5
# coding='utf-8'
# method1
def fun(a, b, c, d, e, f):
x1 = 1 * a
x2 = 1 * b
x3 = 1 * c
x4 = 0.75 * d
x5 = 0.5 * e
x6 = 0 * f return sum([x1, x2, x3, x4, x5, x6]) * 2 print fun(16634, 19016, 18660, 17721, 19835, 16233) # method2 input = '16298 16360 18376 16233 18250 19449'
nums = [int(i) for i in input.split(' ')]
es = [0.75*nums[3],0.5*nums[4]]
for i in xrange(3):
es.append(nums[i])
print sum(es)*2
13 Calculating Expected Offspring的更多相关文章
- SQLSERVER数据库备份操作和还原操作做了什么
SQLSERVER数据库备份操作和还原操作做了什么 看了这篇文章:还原/备份时做了些什么 自己也测试了一下,下面说的错误日志指的是SQLSERVER ERRORLOG 一般在C:\Program Fi ...
- Java8简单的本地缓存实现
原文出处:lukaseder Java8简单的本地缓存实现 这里我将会给大家演示用ConcurrentHashMap类和lambda表达式实现一个本地缓存.因为Map有一个新的方法,在 ...
- 使用MinGW 编译 iconv 库
原文链接: http://www.code-by.org/viewtopic.php?f=54&t=166 GNU页面 http://ftp.gnu.org/pub/gnu/libiconv/ ...
- Switch-case 内定义变量的问题
Switch-case 内定义变量的问题 这个问题需要分开讨论,C 语言和 C++ 的标准定义是不同的. C++ int Caset(int a) { switch (a) { case 1: int ...
- mockito简单教程
注:本文来源:sdyy321的<mockito简单教程> 官网: http://mockito.org API文档:http://docs.mockito.googlecode.com/h ...
- Eureka的自我保护机制
最近项目在Kubernetes上使用Eureka遇到一些问题,在网站上找到一篇针对Eureka自我保护机制原理的文章,觉得不错,总结如下: Eureka的自我保护特性主要用于减少在网络分区或者不稳定状 ...
- 2014秋C++第5周项目1參考-见识刚開始学习的人常见错误
课程主页在http://blog.csdn.net/sxhelijian/article/details/39152703,实践要求见http://blog.csdn.net/sxhelijian/a ...
- cx_Oracle python模块安装
1. 需要从oracle网站下载一下两个包 instantclient-basic-linux.x64-11.2.0.4.0.zip instantclient-sdk-linux.x64-11.2. ...
- Step-by-step from Markov Process to Markov Decision Process
In this post, I will illustrate Markov Property, Markov Reward Process and finally Markov Decision P ...
随机推荐
- oracle10g精简版安装步骤
Feng218 假设出现例如以下错误: 最好把360安全卫士全关了.再安装下.就没事了 然后安装完了进入时输入username:sys或者system password就是自己设好的passwo ...
- MySQL This function has none of DETERMINISTIC, NO SQL...错误1418 的原因分析及解决方法
MySQL开启bin-log后,调用存储过程或者函数以及触发器时,会出现错误号为1418的错误: ERROR 1418 (HY000): This function has none of DETER ...
- mysql中去重 distinct 用法
在使用MySQL时,有时需要查询出某个字段不重复的记录,这时可以使用mysql提供的distinct这个关键字来过滤重复的记录,但是实际中我们往往用distinct来返回不重复字段的条数(count( ...
- FPGA--数字芯片之母
这个世界先有鸡还是先有蛋?没有人知道答案.但是如果有人问ess9018.ak4497.cs43198这些高端SIGMADELTA架构DAC的妈妈是谁?我们可以回答您:它们都有一个同样的妈,名字叫做FP ...
- MAMP pro mac 本地集成环境 php sal apache等集成软件
http://www.sdifen.com/mamppro411.html 已存在我的百度云盘 安装后,打开 MAMP 第一步:配置启动和停止选项 默认启动项.默认停止项,只需要勾选: 1.Star ...
- native关键字(本地方法)、 java调用so动态链接库
Java native关键字 一. 什么是Native Method 简单地讲,一个Native Method就是一个java调用非java代码的接口.一个Native Method是这样一个ja ...
- HDU-5226 Tom and matrix(组合数求模)
一.题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5226 二.题意 给一个大矩阵,其中,$a[i][j] = C_i^j$.输入5个参数,$x_1, ...
- springboot 2.0 自定义redis自动装配
首先创建maven项目 pom.xml: <?xml version="1.0" encoding="UTF-8"?> <project xm ...
- Hyberledger-Fabric 1.00 RPC学习(2)尝试建立一个network
本文参考:http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html 这里我们学习建立第一个Hyperledger Fa ...
- windows解压缩版MySQL5.6.40的安装
windows解压缩版MySQL5.6.40的安装 安装步骤: 1.下载mysql-5.6.40-winx64.zip https://cdn.mysql.com//Downloads/MySQL-5 ...