[USACO08JAN]电话线$Telephone \ \ Lines$(图论$+SPFA+$ 二分答案)
#\(\mathcal{\color{red}{Description}}\)
给定一个图,请你求出在把其中自由选择的\(k\)条的权值都置为零的情况下,图中\(1-N\)最短路上的最大边权的最小值。
#\(\mathcal{\color{red}{Solution}}\)
哇这个题真是吊打我的智商啊…
首先我们看题目中给的限制条件,限制我们不能直接\(sort\)一遍的条件就是我们要找的是最短路上的边权最大值最小限制了我们把一些边的权值置为零之后,图上的最短路。而这个最短路的情况比较复杂,因为你不可以静态删边,\(DP\)的话应该可以,但是\(DP\)起来不容易定义状态并且转移较麻烦其实就是我不会。所以我们考虑把每种合法的状态都枚举一遍,得出\(min\)。但是比较显然的是,由于结果具有某种意义上的单调性,所以我们可以二分。
那怎么二分呢?我们可以考虑二分一条扫描线,把大于这条边的边权都设成\(1\),小于的都设成\(0\)。如果\(SPFA\)出来的结果\(\leq K\)的话,那这就是一种合法的方案;否则不合法。
然后就二分就行了惹~
// luogu-judger-enable-o2
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define to(k) e[k].to
using namespace std ;
const int MAXN = 12050 ;
struct edge{
int to, next, v ;
}e[MAXN << 1] ;
queue<int> q ;
int head[MAXN << 1], cnt, dist[MAXN], i, k, ct ;
int l, r, mid, a, b, c, N, M, K, vis[MAXN], now ;
inline void init(){
memset(dist, 0x3f, sizeof(dist)), memset(vis, 0, sizeof(vis)) ;
queue<int> emt ; swap(q, emt), q.push(1), vis[1] = 1, dist[1] = 0 ;
}
inline bool check(int x){
init() ;
while(!q.empty()){
now = q.front(), q.pop(), vis[now] = 0 ;
for(k = head[now]; k ; k = e[k].next){
ct = (e[k].v > x ? 1 : 0) ;
if(dist[to(k)] > dist[now] + ct){
dist[to(k)] = dist[now] + ct ;
if(!vis[to(k)]){
vis[to(k)] = 1 ;
q.push(to(k)) ;
}
}
}
}
if(dist[N] > K) return 0 ; return 1 ;
}
inline void add(int u, int v, int w){
e[++cnt].to = v, e[cnt].v = w ;
e[cnt].next = head[u], head[u] = cnt ;
}
int main(){
cin >> N >> M >> K ;
for(i = 1; i <= M; i ++){
cin >> a >> b >> c ;
add(a, b, c), add(b, a, c) ;
}l = 0, r = 1000000 ;
while(l < r){
mid = (l + r) >> 1 ;
if(check(mid)) r = mid ;
else l = mid + 1 ;
}
if(l == 1000000) cout << -1 ;
else cout << l ;
}
幕后花絮:这道题由于我忘了判\(-1 +\)空间开小导致挂了好多次……真是\(GG\)
[USACO08JAN]电话线$Telephone \ \ Lines$(图论$+SPFA+$ 二分答案)的更多相关文章
- 洛谷 P1948 [USACO08JAN]电话线Telephone Lines 最短路+二分答案
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1948 [USACO08JAN]电话线Telephone ...
- 洛谷 P1948 [USACO08JAN]电话线Telephone Lines
P1948 [USACO08JAN]电话线Telephone Lines 题目描述 Farmer John wants to set up a telephone line at his farm. ...
- 洛谷P1948 [USACO08JAN]电话线Telephone Lines
题目描述 Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is u ...
- [USACO08JAN]电话线Telephone Lines
多年以后,笨笨长大了,成为了电话线布置师.由于地震使得某市的电话线全部损坏,笨笨是负责接到震中市的负责人.该市周围分布着N(1<=N<=1000)根据1……n顺序编号的废弃的电话线杆,任意 ...
- bzoj 1614 Telephone Lines架设电话线 - 二分答案 - 最短路
Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...
- 题解【洛谷P1948】[USACO08JAN]电话线Telephone Lines
题面 题解 很显然,答案满足单调性. 因此,可以使用二分答案求解. 考虑\(check\)的实现. 贪心地想,免费的\(k\)对电话线一定都要用上. 每次\(check\)时将小于\(mid\)的边权 ...
- P1948 [USACO08JAN]电话线Telephone Lines
传送门 思路: 二分+最短路径:可以将长度小于等于 mid 的边视为长度为 0 的边,大于 mid 的边视为长度为 1 的边,最后用 dijkstra 检查 d [ n ] 是否小于等于 k 即可. ...
- [Usaco2007 Jan]Telephone Lines架设电话线[二分答案+最短路思想]
Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...
- P1948 [USACO08JAN]电话线Telephone Lines(二分答案+最短路)
思路 考虑题目要求求出最小的第k+1大的边权,想到二分答案 然后二分第k+1大的边权wx 把所有边权<=wx的边权变为0,边权>wx的边权变为0,找出最短路之后,如果dis[T]<= ...
- 【SPFA+二分答案】BZOJ1614- [Usaco2007 Jan]Telephone Lines架设电话线
沉迷于刷水 以前的那个二分写法过不了QAQ 换了一种好像大家都比较常用的二分.原因还不是很清楚. [题目大意] 给出一张图,可以将其中k条边的边权减为0,求1到n的路径中最长边的最小值. [思路] 二 ...
随机推荐
- Spring_Spring与DAO_Spring的事务管理
一.Spring的事务管理 在Spring中通常可以通过以下三种方式来实现对事务的管理: 使用Spring的事务代理工厂管理事务 使用Spring的事务注解管理事务 使用AspectJ的AOP配置管理 ...
- js-js的不重载
* 什么是重载?方法名相同,参数列表不同 - Java里面有重载 * js里面不存在重载! <html> <head> <title>World</title ...
- UOJ#316. 【NOI2017】泳池
传送门 一道 \(DP\) 好题 设 \(q\) 为一个块合法的概率 套路一恰好为 \(k\) 的概率不好算,算小于等于 \(k\) 的减去小于等于 \(k-1\) 的 那么设 \(f_i\) 表示宽 ...
- 一类划分关系和指数级生成函数,多项式exp的关系
划分关系 姑且这么叫着 设满足性质 \(A\) 的集合为 \(S_A\),每个元素有标号 如果 \(S_B\) 是由若干个 \(S_A\) 组成的一个大集合 设 \(a_i\) 表示大小为 \(i\) ...
- 关于 img 父容器比img图片要多4个像素的问题
问题背景: <div> <img src="" /> </div> 图片和div 的宽度相同,div的高度等于图片的高度 结果发现div的高度 ...
- Vue2实践揭秘 - 书,读后作了一个简单摘要
jd上买了本实践相关的, 看过后,的确是实践项目后的一些分享,有些网上的一些vue2教程没怎么提及 ----------- 看完了,有些启发,作了个简单摘要作记录, 对vue2感兴趣的,可以自己网上搜 ...
- Java学习笔记(5)----使用正则表达式解决Google Code Jam Qualification2009赛题 Alien Language
原题地址:https://code.google.com/codejam/contest/90101/dashboard#s=p0 题目描述: Problem After years of study ...
- How To Manage StartUp Applications In Ubuntu
Ever felt the need to control startup applications in Ubuntu? You should, if you feel that your Ubun ...
- CentOS7安装minio
[root@localhost ~]# wget https://dl.minio.io/server/minio/release/linux-amd64/minio -bash: wget: 未找到 ...
- bootstrap-table 分页增删改查之一(增加 删除)
先上效果图 引入js文件 <!--js jquery --> <script type="text/javascript" src="${pageCon ...