原题

传送门

有C个奶牛去晒太阳 (1 <=C <= 2500),每个奶牛各自能够忍受的阳光强度有一个最小值和一个最大值(minSPFi and maxSPFi),太大就晒伤了,太小奶牛没感觉。
而刚开始的阳光的强度非常大,奶牛都承受不住,然后奶牛就得涂抹防晒霜,防晒霜的作用是让阳光照在身上的阳光强度固定为某个值。
那么为了不让奶牛烫伤,又不会没有效果。
给出了L种防晒霜。每种的数量和固定的阳光强度(coveri and SPFi)也给出来了
每个奶牛只能抹一瓶防晒霜,最后问能够享受晒太阳的奶牛有几个。

思路

声明

minSPFi : 奶牛忍受的阳光强度最小值
maxSPFi : 奶牛忍受的阳光强度最大值
coveri : 防晒霜数量
SPFi : 防晒霜阳光强度

初始的思路(38 pts)

这是一道贪心题,但我开始时还是想错了。

我先将每头牛按照最小忍受阳光强度从小到大排序,防晒霜按照强度从小到大排序。

然后开始枚举,对于第 \(i\) 个奶牛 ,假设当前枚举到第 \(l\) 个 防晒霜 , 当其 \(SPFi < minSPFi\) , \(l++\) ,直到满足 \(SPFi \ge minSPFi\) ,而当 \(SPFi > maxSPFi\) , 则 continue ,最后判断一下防晒霜剩余个数即可判断答案

初始代码(38 pts)

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = 2510;
int C,L,ans,l = 0; struct cow{//奶牛
int l,r;
bool operator < (const cow &b) const{
if(l == b.l) return r < b.r;
return l < b.l;
}
}a[MAXN]; struct sunscreen{//防晒霜
int SP,num;
bool operator < (const sunscreen &b) const{
return SP < b.SP;
}
}lotion[MAXN]; int main (){
scanf("%d %d",&C,&L);
for(int i = 0 ;i < C;i++) scanf("%d %d",&a[i].l,&a[i].r);
for(int i = 0 ;i < L;i++) scanf("%d %d",&lotion[i].SP,&lotion[i].num);
sort( a , a+C );
sort( lotion , lotion+L);
for(int i = 0 ;i < C;i++){
if(lotion[l].num == 0) l++; //判断个数
while ( a[i].l > lotion[l].SP && l < L-1) l++;//查找左端点是否符合条件
if( a[i].r < lotion[l].SP) continue;//右端点不符合直接跳过
lotion[l].num--;
ans++;//答案处理
}
printf("%d",ans);
return 0;
}

正解思路

然鹅,这种贪心错了。

举个例子:



按照这种算法,我们会让 1 区间使用 I ,2区间使用 J,3 区间使用 K ,答案为 3。

但是答案为4。

正确解法应该为:

先将每头牛按照最小忍受阳光强度从大到小排序,然后开始枚举,对于第 \(i\) 个奶牛 ,我们要找到它能用的防晒霜里面SPFi最大的,然后计算答案。

关于正确性

SPFi更小的显然其他没枚举到的牛很可能会被用到,于是我们拿掉SPFi最大的,具体可以见上面的图。

代码

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = 2510;
int C,L,ans; struct cow{
int l,r;
bool operator < (const cow &b) const{
return l > b.l;
}
}a[MAXN]; struct sunscreen{
int SP,num;
}lotion[MAXN]; int main (){
scanf("%d %d",&C,&L);
for(int i = 0 ;i < C;i++) scanf("%d %d",&a[i].l,&a[i].r);
for(int i = 0 ;i < L;i++) scanf("%d %d",&lotion[i].SP,&lotion[i].num);
sort( a , a+C );
for(int i = 0 ;i < C;i++){
int l = -1,choose = -1;
for(int j = 0;j < L;j++)//暴力枚举
if ( lotion[j].num > 0 && lotion[j].SP >= a[i].l && lotion[j].SP <= a[i].r)
if(lotion[j].SP > choose){
choose = lotion[j].SP;
l = j;
}
if( l != -1 ){
ans++;
lotion[l].num--;
}//答案处理
}
printf("%d",ans);
return 0;
}

题解 洛谷 P2287 [USACO07NOV]Sunscreen G的更多相关文章

  1. 【题解】洛谷P3119 Grass Cownoisseur G

    题面:洛谷P3119 Grass Cownoisseur G 本人最近在熟悉Tarjan的题,刷了几道蓝题后,我飘了 趾高气扬地点开这道紫题,我一瞅: 哎呦!这不是分层图吗? 突然就更飘了~~~ 用时 ...

  2. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  3. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  4. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  5. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  6. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  7. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  8. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  9. 题解-洛谷P6788 「EZEC-3」四月樱花

    题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y ...

随机推荐

  1. 9.实战交付一套dubbo微服务到k8s集群(2)之Jenkins部署

    1.下载Jenkins镜像打包上传harbor上 [root@hdss7- ~]# docker pull jenkins/jenkins:2.190. [root@hdss7- ~]# docker ...

  2. 为什么启动线程是start方法?

    为什么启动线程是start方法 十年可见春去秋来,百年可证生老病死,千年可叹王朝更替,万年可见斗转星移.   凡人如果用一天的视野,去窥探百万年的天地,是否就如同井底之蛙? 背景:启动线程是start ...

  3. 本地代码提交到远程仓库(git)

    [准备环境] 我没有在Linux搭建gitlab私有云服务器,用的是开源的 gitee托管平台 1.在gitee注册账号 2.本地下载git客户端 [步骤] 1  本地新建1个文件夹  进入文件夹后 ...

  4. Tensorflow实现神经网络的前向传播

    我们构想有一个神经网络,输入为两个input,中间有一个hidden layer,这个hiddenlayer当中有三个神经元,最后有一个output. 图例如下: 在实现这个神经网络的前向传播之前,我 ...

  5. JavaWeb网上图书商城完整项目--day02-7.提交注册表单功能之流程分析

    1.点击注册之后将提交的信息传递到UserServlet的public String regist方法进行处理,然后将东西通过service进行处理 业务流程:

  6. jni 字符串的梳理 2 字符串的处理操作

    我们实现下面的一个功能: 1.首先在java层传递一个字符串到c层,c层首先将jstring转换成char*类型,然后将两个字符串相加,然后再再将char*类型转换成jstring,在上层显示出来 我 ...

  7. return ,continue,break的用法与区别总结

    1.return 语句的作用 (1) return 从当前的方法中退出,返回到该调用的方法的语句处,继续执行.       (2) return 返回一个值给调用该方法的语句,返回值的数据类型必须与方 ...

  8. 轻松搞定安全框架(Shiro)

    SpringBoot 是为了简化 Spring 应用的创建.运行.调试.部署等一系列问题而诞生的产物,自动装配的特性让我们可以更好的关注业务本身而不是外部的XML配置,我们只需遵循规范,引入相关的依赖 ...

  9. 新技术新框架不断涌现,目前学习web前端开发都要掌握什么?

    web前端开发由网页制作演变而来,随着web2.0的发展,网页不再只是承载单一的文字和图片,各种丰富媒体让网页的内容更加生动,网页上软件化的交互形式为用户提供了更好的使用体验,这些都是基于前端技术实现 ...

  10. docker 运行镜像

    docker run -e "环境变量=值“ --nam 别名 -v /etc/localtime:/etc/localtime:ro [时区保持跟宿主机器一致]-d -p 21021:80 ...