第2章 RDD编程(2.1-2.2)
第2章 RDD编程
2.1 编程模型
在Spark中,RDD被表示为对象,通过对象上的方法调用来对RDD进行转换。经过一系列的transformations定义RDD之后,就可以调用actions触发RDD的计算,action可以是向应用程序返回结果(count, collect等),或者是向存储系统保存数据(saveAsTextFile等)。在Spark中,只有遇到action,才会执行RDD的计算(即延迟计算),这样在运行时可以通过管道的方式传输多个转换。
要使用Spark,开发者需要编写一个Driver程序,它被提交到集群以调度运行Worker,如下图所示。Driver中定义了一个或多个RDD,并调用RDD上的action,Worker则执行RDD分区计算任务。
2.2 RDD创建
在Spark中创建RDD的创建方式大概可以分为三种:从集合中创建RDD;从外部存储创建RDD;从其他RDD创建。
由一个已经存在的Scala集合创建,集合并行化。
val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))
而从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD。我们可以先看看这两个函数的声明:
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T]
def makeRDD[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T]
def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T]
我们可以从上面看出makeRDD有两种实现,而且第一个makeRDD函数接收的参数和parallelize完全一致。其实第一种makeRDD函数实现是依赖了parallelize函数的实现,来看看Spark中是怎么实现这个makeRDD函数的:
def makeRDD[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
parallelize(seq, numSlices)
}
我们可以看出,这个makeRDD函数完全和parallelize函数一致。但是我们得看看第二种makeRDD函数函数实现了,它接收的参数类型是Seq[(T, Seq[String])],Spark文档的说明是:
Distribute a local Scala collection to form an RDD, with one or more location preferences (hostnames of Spark nodes) for each object. Create a new partition for each collection item.
原来,这个函数还为数据提供了位置信息,来看看我们怎么使用:
scala> val guigu1= sc.parallelize(List(1,2,3))
guigu1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:21
scala> val guigu2 = sc.makeRDD(List(1,2,3))
guigu2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at makeRDD at <console>:21
scala> val seq = List((1, List("slave01")),| (2, List("slave02")))
seq: List[(Int, List[String])] = List((1,List(slave01)),
(2,List(slave02)))
scala> val guigu3 = sc.makeRDD(seq)
guigu3: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at makeRDD at <console>:23
scala> guigu3.preferredLocations(guigu3.partitions(1))
res26: Seq[String] = List(slave02)
scala> guigu3.preferredLocations(guigu3.partitions(0))
res27: Seq[String] = List(slave01)
scala> guigu1.preferredLocations(guigu1.partitions(0))
res28: Seq[String] = List()
我们可以看到,makeRDD函数有两种实现,第一种实现其实完全和parallelize一致;而第二种实现可以为数据提供位置信息,而除此之外的实现和parallelize函数也是一致的,如下:
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}
def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = withScope {
assertNotStopped()
val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap
new ParallelCollectionRDD[T](this, seq.map(_._1), seq.size, indexToPrefs)
}
都是返回ParallelCollectionRDD,而且这个makeRDD的实现不可以自己指定分区的数量,而是固定为seq参数的size大小。
由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
scala> val atguigu = sc.textFile("hdfs://hadoop102:9000/RELEASE")
atguigu: org.apache.spark.rdd.RDD[String] = hdfs:// hadoop102:9000/RELEASE MapPartitionsRDD[4] at textFile at <console>:24
第2章 RDD编程(2.1-2.2)的更多相关文章
- 第2章 RDD编程(2.3)
第2章 RDD编程(2.3) 2.3 TransFormation 基本RDD Pair类型RDD (伪集合操作 交.并.补.笛卡尔积都支持) 2.3.1 map(func) 返回一个新的RDD,该 ...
- Learning Spark中文版--第三章--RDD编程(2)
Common Transformations and Actions 本章中,我们浏览了Spark中大多数常见的transformation(转换)和action(开工).在包含特定数据类型的RD ...
- Learning Spark中文版--第三章--RDD编程(1)
本章介绍了Spark用于数据处理的核心抽象概念,具有弹性的分布式数据集(RDD).一个RDD仅仅是一个分布式的元素集合.在Spark中,所有工作都表示为创建新的RDDs.转换现有的RDD,或者调 ...
- 《Spark快速大数据分析》—— 第三章 RDD编程
- Spark学习笔记2:RDD编程
通过一个简单的单词计数的例子来开始介绍RDD编程. import org.apache.spark.{SparkConf, SparkContext} object word { def main(a ...
- 2. RDD编程
2.1 编程模型 在Spark中,RDD被表示为对象,通过对象上的方法调用来对RDD进行转换.经过一系列的transformations定义RDD之后,就可以调用actions触发RDD的计算,act ...
- 《深入浅出Node.js》第7章 网络编程
@by Ruth92(转载请注明出处) 第7章 网络编程 Node 只需要几行代码即可构建服务器,无需额外的容器. Node 提供了以下4个模块(适用于服务器端和客户端): net -> TCP ...
- 《深入浅出Node.js》第4章 异步编程
@by Ruth92(转载请注明出处) 第4章 异步编程 Node 能够迅速成功并流行起来的原因: V8 和 异步 I/O 在性能上带来的提升: 前后端 JavaScript 编程风格一致 一.函数式 ...
- Spark菜鸟学习营Day3 RDD编程进阶
Spark菜鸟学习营Day3 RDD编程进阶 RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lambda表示式来替换对象写 ...
随机推荐
- luogu CF125E MST Company wqs二分 构造
LINK:CF125E MST Company 难点在于构造 前面说到了求最小值 可以二分出斜率k然后进行\(Kruskal\) 然后可以得到最小值.\(mx\)为值域. 得到最小值之后还有一个构造问 ...
- intel:spectre&Meltdown侧信道攻击(一)
只要平时对安全领域感兴趣的读者肯定都听过spectre&Meltdown侧信道攻击,今天简单介绍一下这种攻击的原理( https://www.bilibili.com/video/av1814 ...
- Mac IDEA 免激活破解版 亲测有效 2020.8.1记
开局一张图 下载地址 链接: https://pan.baidu.com/s/1OKbYCRQiZ3ip0Gzle5wydg 密码: iwfb 步骤 卸载之前的IDEA(没安装过,可忽略) 将下载后的 ...
- Raft协议理解
raft协议最关键的部分是领导选举和日志复制 日志复制 日志匹配原则:如果两个日志在相同索引位置的entry的任期号相同,那么这两个日志从头到这个索引位置之前完全相同. 日志匹配原则可以解释为如下两条 ...
- Armv8-A Memory management
本文介绍Armv8-A的内存管理.内存管理指的是在系统中,内存访问是如何实现的. 使用内存管理机制,可以让每个应用之间的内存地址分离,即sandbox application,也可以让多个在物理内存上 ...
- 学Java必看!零基础小白再也不用退缩了
程序员们!请往这儿看 对于JAVA的学习,可能你还会有许多的顾虑 不要担心 接着往下看吧 学Java前 一.数学差,英语也不好是不是学不好Java? 答案是:是~ 因为你在问这个问题的时候说明你对自己 ...
- Linux操作系统 可插拔认证模块PAM(3)
六.Linux 操作系统安全登陆设计 自己编写PAM 模块并编译成动态链接库so 文件,将其添加进/etc/pam.d/login 文件中实现命令行安全登陆设计,将其添加进/etc/pam.d/lig ...
- python8.1多线程
import threadingimport time def run1 (name,sex): print(name,sex,"执行线程1") time.sleep(3)def ...
- 004_自己尝试go语言中的方法
go语言可以给任意类型定义方法,我在学习过程中,一开始一头雾水,但是随着理解的深入,现在也大概知道了什么叫做方法 之前的一些例子其实讲的并不是特别生动,下面我用一个生动的例子演示一下 首先提出需求.我 ...
- 22、Command 命令模式
1.command 命令模式 命令模式(Command Pattern):在软件设计中,我们经常需要向某些对象发送请求,但是并不知道请求的接收者是谁,也不知道被请求的操作是哪个,我们只需在程序运行时指 ...