题目链接

题目大意:求$(\sum\limits_{i=0}^n C_{nk}^{ik+r})\ mod \ p$的值。

---------------------

讲真,一开始看到这个题我都没往DP方面想,以为是什么大力推式子的数学题。

设$f_{i,j}$表示考虑前$i$个物品,选出的物品$mod \ k=j$的方案数。最后输出$f_{n,r}$。

易得转移方程:

$f_{i,j}=f_{i-1,j}+f_{i-1,j-1}$

$f_{i,0}=f_{i-1,0}+f_{i-1,k-1}$

看到数据范围想到矩阵加速,有转移矩阵:

$\begin{bmatrix}1&0&\cdots&0&1\\1&1&0&\cdots&0\\0&1&1&\cdots&0\\\vdots&\ddots&\ddots&\ddots&\vdots\\0&0&\cdots&1&1 \end{bmatrix}$

矩阵快速幂乘$nk$次方即可。

注意当$k=1$时只有一个元素,其初始值为2。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,p,k,r;
struct node
{
int a[][];
node(){
memset(a,,sizeof(a));
}
inline void build(){
for (int i=;i<=k;i++) a[i][i]=;
}
};
node operator * (const node x,const node y)
{
node z;
for (int l=;l<=k;l++)
for (int i=;i<=k;i++)
for (int j=;j<=k;j++)
z.a[i][j]=(z.a[i][j]+x.a[i][l]*y.a[l][j])%p;
return z;
}
signed main()
{
cin>>n>>p>>k>>r;int mi=n*k;
node a,ans;ans.build();
for (int i=;i<=k-;i++) a.a[i][i]++,a.a[i][i+]++;
a.a[k][]++,a.a[k][k]++;
while(mi)
{
if (mi&) ans=ans*a;
a=a*a;
mi>>=;
}
printf("%lld",ans.a[k][k-r]);
return ;
}

【六省联考2017】组合数问题 题解(矩阵快速幂优化DP)的更多相关文章

  1. P3746 [六省联考2017]组合数问题

    P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{ ...

  2. 洛谷P3746 [六省联考2017]组合数问题

    题目描述 组合数 C_n^mCnm​ 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种 ...

  3. [BZOJ4870][六省联考2017]组合数问题(组合数动规)

    4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 748  Solved: 398[Submit][Statu ...

  4. bzoj千题计划263:bzoj4870: [六省联考2017]组合数问题

    http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x== ...

  5. P3746 【[六省联考2017]组合数问题】

    题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是 ...

  6. 洛谷$P$3746 [六省联考2017]组合数问题 $dp$+矩乘+组合数学

    正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下 ...

  7. BZOJ4870 [六省联考2017] 组合数问题 【快速幂】

    题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...

  8. [六省联考2017]组合数问题 (矩阵优化$dp$)

    题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][ ...

  9. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

随机推荐

  1. 从零开始实现multipart/form-data数据提交

    在HTTP服务应用中进行数据提交一般都使用application/json,application/x-www-form-urlencoded和multipart/form-data这几种内容格式.这 ...

  2. day29 作业

    1.引入属性访问控制+property 2.引入继承与派生的概念来减少代码冗余 注意:要满足什么"是"什么的关系,不满足"是"的关系不要去继承 import u ...

  3. WPF基于.Net Core

    WPF基于.Net Core 因为最近.net core的热门,所以想实现一下.net core框架下的WPF项目,还是MVVM模式,下面就开始吧,简单做一个计算器吧. 使用VS2019作为开发工具 ...

  4. scala 数据结构(十一):流 Stream、视图 View、线程安全的集合、并行集合

    1 流 Stream stream是一个集合.这个集合,可以用于存放无穷多个元素,但是这无穷个元素并不会一次性生产出来,而是需要用到多大的区间,就会动态的生产,末尾元素遵循lazy规则(即:要使用结果 ...

  5. 01-MySQL支持的数据类型

    1.数值类型 整数类型 MySQL 支持的整数类型有 SQL 标准中的整数类型 INTEGER,SMALLINT,TINYINT.MEDIUMINT和BIGINT.其整数类型的特性如下表所示: 在上述 ...

  6. Host是什么?如何设置host文件?

    前言 前几天我在使用一些软件和网站时,出了一些小问题,然后我在网上搜解决问题的方法,搜着搜着就看到频繁出现的Host这个词.以前还没有注意到这个东西,因为总觉得它是系统文件,没必要去乱动:但是经过这次 ...

  7. IOS上传图片方向问题

    在显示上传完毕的图片的时候遇到了一个问题, 图片莫名其妙被逆时针旋转了90度就很离谱 如下图 经过一番查询, 原来是 IOS 的相机拍照的时候会把方向角写入到图片里面 因为我用的是 element 的 ...

  8. 设计模式:template method模式

    思想:在父类中定义处理流程的框架,在子类中实现具体的处理方法 优点:在父类中定义处理的算法,无需在每个子类中重复编写 继承关系图: 例子: //接口定义 class Parent { public: ...

  9. 【bfs+链式向前星】防御僵尸(defend)计蒜客 - 45288

    题目: A 国有 n 座城市,n−1 条双向道路将这些城市连接了起来,任何两个城市都可以通过道路互通. 某日,A 国爆发了丧尸危机,所有的幸存者现在都聚集到了 A 国的首都(首都是编号为 1 的城市) ...

  10. Vuex里的module选项和移动端布局

    Vuex里的modules 在store文件夹里创建一个modules的文件夹,里面随意创建一个.js文件,然后export输出