HDU3686 Traffic Real Time Query System 题解
题目
City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.
输入格式
There are multiple test cases.
For each test case:
The first line contains two integers \(N\) and \(M\), representing the number of the crossings and roads.
The next M lines describe the roads. In those M lines, the i th line (i starts from 1)contains two integers \(X_i\) and \(Y_i\), representing that road i connects crossing \(X_i\) and \(Y_i\) (\(X_i≠Y_i\)).
The following line contains a single integer Q, representing the number of RTQs.
Then Q lines follows, each describing a RTQ by two integers \(S\) and \(T(S≠T)\) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.
The input ends with a line of “0 0”.
Please note that: \(0< N \le 10000\), \(0 < M \le 100000\), \(0 < Q \le 10000\), \(0 < X_i\),\(Y_i \le N\), \(0 < S,T \le M\)
输出格式
For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.
样例输入
5 6
1 2
1 3
2 3
3 4
4 5
3 5
2
2 3
2 4
0 0
样例输出
0
1
题解
题目大意:
输出两条边之间必须经过的点
这道题其实没有什么思维难度, 显然先缩点, 求lca即可.
主要就是调起来很麻烦, 而且起点和终点不是点是边.
tarjon缩点, 倍增求lca
代码
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e4 + 5, M = 1e5 + 5, Lg = 25;
int n, m, qn, tot, head[2][N << 1], top, sta[N], dfsc, dfn[N], low[N], dccCnt, root, bel[N], eb[M], fa[N << 1][Lg], dep[N << 1], id[N];
bool cut[N], vis[N << 1];
vector<int> dcc[N];
struct Edge { int to, nxt, id; } edges[M << 2];
inline void add(int type, int from, int to, int eid) {
edges[++tot] = (Edge){to, head[type][from], eid}, head[type][from] = tot;
}
void tarjan(int x) {
dfn[x] = low[x] = ++dfsc;
sta[++top] = x;
if (x == root && head[0][x] == 0)
return dcc[++dccCnt].push_back(x);
int son = 0;
for (int i = head[0][x]; i; i = edges[i].nxt) {
int y = edges[i].to;
if (!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
if (dfn[x] <= low[y]) {
son++;
if (x != root || son > 1) cut[x] = 1;
dccCnt++;
while(1){
int z = sta[top--];
dcc[dccCnt].push_back(z);
if (z == y) break;
}
dcc[dccCnt].push_back(x);
}
} else low[x] = min(low[x], dfn[y]);
}
}
void dfs(int x, int fat, int depth) {
vis[x] = 1, fa[x][0] = fat, dep[x] = depth;
for (int i = 1; i <= 15; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for (int i = head[1][x]; i; i = edges[i].nxt) {
int y = edges[i].to;
if (vis[y]) continue;
dfs(y, x, depth + 1);
}
}
int lca(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
for (int i = 15; i >= 0; i--)
if (dep[fa[x][i]] >= dep[y]) x = fa[x][i];
if (x == y) return x;
for (int i = 15; i >= 0; i--)
if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int main() {
while (1) {
scanf("%d%d", &n, &m);
if (n == 0 && m == 0) break;
tot = dfsc = dccCnt = top = 0;
memset(head, 0, sizeof(head));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(cut, 0, sizeof(cut));
for (int x, y, i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
add(0, x, y, i), add(0, y, x, i);
}
for (int i = 1; i <= n; i++) dcc[i].clear();
for (int i = 1; i <= n; i++)
if (!dfn[i]) tarjan(root = i);
int now = dccCnt;
for (int i = 1; i <= n; i++)
if (cut[i]) id[i] = ++now;
for (int i = 1; i <= dccCnt; i++) {
for (int j = 0; j < dcc[i].size(); j++) {
int x = dcc[i][j];
if (cut[x]) add(1, id[x], i, 0), add(1, i, id[x], 0);
bel[x] = i;
}
for (int j = 0; j < dcc[i].size(); j++)
for (int k = head[0][dcc[i][j]]; k; k = edges[k].nxt) if (bel[edges[k].to] == i) eb[edges[k].id] = i;
}
memset(dep, 0, sizeof(dep));
memset(fa, 0, sizeof(fa));
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= now; i++) if (!vis[i]) dfs(i, 0, 1);
scanf("%d", &qn);
for (int x, y; qn--;) {
scanf("%d%d", &x, &y);
x = eb[x], y = eb[y];
if (x == y) puts("0");
else printf("%d\n", (dep[x] + dep[y] - 2 * dep[lca(x, y)]) / 2);
}
}
return 0;
}
HDU3686 Traffic Real Time Query System 题解的更多相关文章
- UVALive-4839 HDU-3686 Traffic Real Time Query System 题解
题目大意: 有一张无向连通图,问从一条边走到另一条边必定要经过的点有几个. 思路: 先用tarjan将双连通分量都并起来,剩下的再将割点独立出来,建成一棵树,之后记录每个点到根有几个割点,再用RMQ求 ...
- CH#24C 逃不掉的路 和 HDU3686 Traffic Real Time Query System
逃不掉的路 CH Round #24 - 三体杯 Round #1 题目描述 现代社会,路是必不可少的.任意两个城镇都有路相连,而且往往不止一条.但有些路连年被各种XXOO,走着很不爽.按理说条条大路 ...
- HDU3686 Traffic Real Time Query System
P.S.此题无代码,只有口胡,因为作者码炸了. 题目大意 给你一个有 \(n\) 个点, \(m\) 条边的无向图,进行 \(q\) 次询问,每次询问两个点 \(u\) \(v\),输出两个点的之间的 ...
- HDU 3686 Traffic Real Time Query System (图论)
HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...
- HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)
Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...
- HDU3686 Traffic Real Time Query【缩点+lca】
题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...
- Traffic Real Time Query System 圆方树+LCA
题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...
- Traffic Real Time Query System,题解
题目链接 题意: 问从一条边到另一条边的必经点. 分析: 首先,问必经点,当然是要点双缩点(圆方树)啦,关键是把边映射到哪一点上,其实直接放在某联通分量的方点上就行,但是这个点并不好找,所以我们考虑一 ...
- HDU Traffic Real Time Query System
题目大意是:对于(n, m)的图,给定边a, b查询从a到b要经过的割点的最少数目. 先tarjan算法求双连通然后缩点,即对于每个割点将周围的每个双连通看成一个点与之相连.然后求解LCA即可,距离d ...
随机推荐
- Python——day3
看到右边的时钟了吗? 我想世界最公平的一件事就是每个人的每一小时.每一天.每一年都是相同的,每个人的时间都是一样的. 一直保持温热感是一件很了不起的事,加油,屏幕前的你和我. 明天,还在等你 回顾d ...
- Python 爬虫之request+beautifulsoup+mysql
一.什么是爬虫?它是指向网站发起请求,获取资源后分析并提取有用数据的程序:爬虫的步骤: 1.发起请求使用http库向目标站点发起请求,即发送一个RequestRequest包含:请求头.请求体等 2. ...
- 实践案例丨基于ModelArts AI市场算法MobileNet_v2实现花卉分类
概述 MobileNetsV2是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网,此模型基于 MobileNetV2: Inverted Residuals and Linear ...
- synchronized 和 java.util.concurrent.locks.Lock 的异同 ?
主要相同点:Lock 能完成 synchronized 所实现的所有功能 主要不同点:Lock 有比synchronized 更精确的线程语义和更好的性能. synchronized 会自动释放锁,而 ...
- 离职冷静期文件.doc
<中华人民共和国民法典>通过十三届全国人大三次会议表决,将于2021年1月1日起施行,其中#离婚冷静期#备受关注.多方人士表示,离婚冷静期设立的出发点,不是对婚姻自由的一种破坏,而是让当事 ...
- URL 链接中的 UTM参数何定义?
浏览网页或者点击广告的时候,细心的朋友们或者有关注浏览器地址栏的 URL 链接时,一定会发现 utm_source 或者与其类似的链接,那么链接中的这个UTM参数有什么用呢? UTM 为“Urchin ...
- 分享我在前后端分离项目中Gitlab-CI的经验
长话短说,今天分享我为前后端分离项目搭建Gitlab CI/CD流程的一些额外经验. Before Gitlab-ci是Gitlab提供的CI/CD特性,结合Gitlab简单友好的配置界面,能愉悦的在 ...
- Astah类图中使用list<>
如何在类图中表示如下的属性,这个问题困扰了我好久.之前百度找不着任何相关的内容,今天终于在其官方论坛找着了答案. class cMeterRecord { protected: cMeterStatu ...
- QTabWidget 中 关于Tab 关闭和添加的基本教程!
QTabWidget是PyQt5 中使用较为广泛的容器之一,经常会在日常使用的软件中用到它:QTabwidget是由几个标签组成,每个标签可以当作一个界面,下面就是应用Qtabwidget的一个简单例 ...
- pip安装报错: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ProxyError('Cannot connect to proxy
pip安装报错 解决办法: pip install selenium -i http://pypi.douban.com/simple --trusted-host pypi.douban.com