[学习笔记] Numpy基础 系统学习
[学习笔记] Numpy基础
上专业选修《数据分析程序设计》课程,老师串讲了Numpy基础,边听边用jupyter敲了下——理解+笔记。
老师讲的很全很系统,有些点没有记录,在PPT里就不搬了。
环境:python3.6 vscode+jupyter扩展
#%%
#------------------------------2019.9.23 NumPy-----------------------------
import numpy as np
# 1.NumPy在一个连续的内存块中存储数据
# 2.性能差异
my_arr = np.arange(100000)
my_list = list(range(10000))
print(my_arr)
#%%
# 1.ndarry:一种多维数组对象
data = np.random.randn(2,3)
print(data,'\n')
print(data*10,'\n')
print(data+data,'\n')
# 1.1.ndarry通用的同构数据多为容器——所有元素必须是相同类型的
# .shape 返回表示各维度大小的元组
# .dtype 返回类型
print(data.shape)
print(data.dtype)
#%%
# 1.2.创建ndarry
# 1.2.1.用array函数直接创建,dtype自动判定
data_list = [1,1.5,2]
arr1 = np.array(data_list)
print(arr1)
data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)
print(arr2.dtype)
# 可以用属性ndim和shape验证
arr2.ndim #只返回维数
# eg:arr_empty = np.empty((2,3,4,2))
# arr_empty为4
#%%
#一般numpy创建的数组类型为浮点数
# 1.2.2特定函数创建数组,传入表示形状的元组即可。
# zeros
# ones
# empty 创建一个没有任何具体值的数组
arr_zero = np.zeros(10)
arr_one = np.ones((2,3))
arr_empty = np.empty((2,3,4,2))
print(arr_zero)
print(arr_one)
print(arr_empty)
print(arr_empty.ndim)
# arange
np.arange(15)
# 位矩阵
#%%
# 1.3类型
# 创建时指定
arr3 = np.array([1,2,3])
arr4 = np.array([1,2,3],dtype='float64')
print(arr3.dtype)
print(arr4.dtype)
# 转换类型
arr3 = arr3.astype(np.float64)
print(arr3.dtype)
# 浮点型转整数——舍弃小数点后
arr_float = np.random.rand(1,10)*10
print(arr_float)
arr_float = arr_float.astype(np.int32)
print(arr_float)
# 某字符串数组表示的全是数字,可以直接用astype转为数值形式
arr_string = np.array(['1.0','2.0','3.0'])
print(arr_string.dtype)
arr_string = arr_string.astype(np.float64)
print(arr_string.dtype)
print(arr_string)
#adtype总会创建一个数据备份,即使现类型和目标类型相同
#%%
# 1.4运算
arr = np.array([[1.,2.,3.], [4.,5.,6.]])
print(arr)
print(arr-arr)
print(arr*arr)
print(1/arr)
print(arr**0.5) #和标量运算,数组每个元素都和此标量运算
arr_compare = np.array([ [0,4,1], [7,2,12] ])
print(arr_compare > arr)
#%%
# 1.5切片、索引
# 对数字切片的修改,是直接对数组本身修改(python的list列表不是,是对副本操作)
# 对ndarray切片的副本操作:arr[5:8].cpoy()。这样不更改原数组
arr_sl = np.arange(10)
print(arr_sl)
arr_sl[3:6] = 999 #广播
print(arr_sl)
arr_slice = arr_sl[3:6]
arr_slice[:] = 888
print(arr_sl)
li = list(range(10))
list_slice = li[2:8]
list_slice[0] = 666
print(list_slice)
print(li)
arr2d = np.array([[1.,2.,3.], [4.,5.,6.]])
#索引
print(arr2d[0][1])
#同
print(arr2d[0,1])
#多维数组中,若省略了后面的索引,则返回对象是一个维度低一点的ndarray
arr3d = np.array([ [ [1,2,3],[4,5,6] ], [ [7,8,9],[10,11,12] ] ])
print(arr3d.shape)
print(arr3d)
print(arr3d[0,1]) # 访问索引已(0,1)开头的那些值
arr3d[0] = 999
print(arr3d)
#%%
#1.6布尔
# 布尔型索引选取数组中的数据,总是创建副本,即使返回一模一样的数组也是
names = np.array(['Bob','Peter','Bob','Jenny'])
data_arr = np.random.randn(4,7)
print(data_arr)
arr_bool = names=='Bob'
print(arr_bool) #[ True False True False]
print(data_arr[arr_bool])
print('------------------------')
print(data_arr[names=='Bob',5:]) #选取Bob,并索引列
#%%
# 1.6.2 布尔取反
# way1:
names!='Bob'
# way2:
data_arr[~(names=='Bob')]
#%%
# 1.6.3 布尔组合
mask = (names=='Bob')|(names=='Peter')
data_arr[mask]
data_arr[data_arr>1]
#%%
# 1.7花式索引
# 为了按特定顺序选中数据,那么传入表示顺序的[]即可
data = np.arange(80).reshape((8,10))
data[[3,1,4]]
data[[1,5,3],[0,3,2]] #返回(1,0),(5,3),(3,2)位置的数据
data[[1,5,7,2]][:,[0,3,1,2]] #列所有元素都输出,但按0 3 1 2的顺序
# 行 列
#%%
# 1.7.1花式索引的转置
# 花式索引和切片不一样,它总是副本
# 转置不是副本,是本身
arr = np.arange(15).reshape((3,5))
arr.T
# transpose 高维数组转置
#%%
# 2.通用数组
arr = np.arange(10)
print(np.sqrt(arr))
print(arr)
# 每个位置上,最大的那个
# np.maximum(x,y)
# 分别返回小数部分、整数部分
remainder, whole_part = np.modf(arr)
print(remainder)
print(whole_part)
# abs
# square
# exp
# log log10 log2 log1p
# ...
#%%
# 3利用数组进行数据处理
# 3.1
points = np.arange(-5,5,0.01)
xs,ys = np.meshgrid(points,points) # 生成网格点坐标矩阵
ys
# 3.2 np.where
arr = np.random.randn(3,4)
print(arr)
print(np.where(arr>0,2,-2))
# 3.3数学和统计方法
# 既可以当实例方法,也可以当顶级numpy函数用
print(arr.mean())
# 对特定轴向
arr.mean(axis=0) #对列求
# 或
arr.mean(0)
arr.sort(1) #对行排序就地排序
np.unique(arr) #删除重复的元素
# cumsum对特定轴
arr = np.arange(9).reshape(3,3)
print(arr)
print(arr.cumsum(1))
# 同理 cumprod 累乘
# 对布尔型
arr = np.random.randn(100)
print( (arr>0).sum() )
# any() 检查数组中是否存在>=1个True
# all() 检查数组中是否全为True
#%%
# 4.线性代数
# x.dot(y) 同 np.dot(x,y)
# diag 返回对角线矩阵
# trace
# det
# eig
# inv
# pinv
# qr
# svd
#%%
# 5.伪随机数生成
# 正态分布
samples = np.random.normal(size=(3,3))
# 标准整体分布
ss = np.random.randn(3)
# 给定上下限随机整数
sss = np.random.randint(10,size=(4)) # [4 6 4 1]
[学习笔记] Numpy基础 系统学习的更多相关文章
- Linux学习笔记之——基础命令学习
1.find 按照名字查找:find / -name file_name 2.zip压缩 1) 我想把一个文件repartition.txt和一个目录invader压缩成为amateur.zip: ...
- Python学习笔记之基础篇(-)python介绍与安装
Python学习笔记之基础篇(-)初识python Python的理念:崇尚优美.清晰.简单,是一个优秀并广泛使用的语言. python的历史: 1989年,为了打发圣诞节假期,作者Guido开始写P ...
- MyBatis:学习笔记(1)——基础知识
MyBatis:学习笔记(1)--基础知识 引入MyBatis JDBC编程的问题及解决设想 ☐ 数据库连接使用时创建,不使用时就释放,频繁开启和关闭,造成数据库资源浪费,影响数据库性能. ☐ 使用数 ...
- C#学习笔记(基础知识回顾)之值类型和引用类型
一:C#把数据类型分为值类型和引用类型 1.1:从概念上来看,其区别是值类型直接存储值,而引用类型存储对值的引用. 1.2:这两种类型在内存的不同地方,值类型存储在堆栈中,而引用类型存储在托管对上.存 ...
- mybatis学习笔记之基础复习(3)
mybatis学习笔记之基础复习(3) mybatis是什么? mybatis是一个持久层框架,mybatis是一个不完全的ORM框架.sql语句需要程序员自己编写, 但是mybatis也是有映射(输 ...
- Quartz学习笔记:基础知识
Quartz学习笔记:基础知识 引入Quartz 关于任务调度 关于任务调度,Java.util.Timer是最简单的一种实现任务调度的方法,简单的使用如下: import java.util.Tim ...
- ELK-6.5.3学习笔记–elk基础环境安装
本文预计阅读时间 13 分钟 文章目录[隐藏] 1,准备工作. 2,安装elasticsearch. 3,安装logstash. 4,安装kibana 以往都是纸上谈兵,毕竟事情也都由部门其他小伙伴承 ...
- Java后端高频知识点学习笔记1---Java基础
Java后端高频知识点学习笔记1---Java基础 参考地址:牛_客_网 https://www.nowcoder.com/discuss/819297 1.重载和重写的区别 重载:同一类中多个同名方 ...
- bootstrap学习笔记之基础导航条 http://www.imooc.com/code/3111
基础导航条 在Bootstrap框中,导航条和导航从外观上差别不是太多,但在实际使用中导航条要比导航复杂得多.我们先来看导航条中最基础的一个--基础导航条. 使用方法: 在制作一个基础导航条时,主要分 ...
随机推荐
- JavaScript 对象的创建和操作
<script> // 对象是属性的无序集合,每个属性都是一个名/值对. 属性名称是一个字符串. // 对象种类 // 内置对象(nativ ...
- 07-Python面对对象初级
一.简介 面对过程编程: 根据操作数据的函数或语句块来设计程序. 面对对象编程:把一些函数,数据,方法和功能结合起来,用“对象”包裹组织程序的一种方法. 类和对象是面向对象编程的两个主要方面.类创建一 ...
- CentOS7 64位下MySQL区分大小写
在使用centos系统时,安装完MySQL数据库,创建完表之后,发现查询表操作时,是区分大小写的, 说以说在创建表之前,需要查看一下数据库是否区分大小写: 查看办法: lower_case_table ...
- 在Access中执行SQL
1.基本介绍 Microsoft Access在很多地方得到广泛使用,例如小型企业,大公司的部门.喜爱编程的开发人员亦利用它来制作处理数据的桌面系统.它也常被用来开发简单的WEB应用程序. 2.Ace ...
- Web Scraping using Python Scrapy_BS4 - using Scrapy and Python(1)
Create a new Scrapy project first. scrapy startproject projectName . Open this project in Visual Stu ...
- 带你上手阿里开源的 Java 诊断利器:Arthas
本文适合有 Java 基础知识的人群. 本文作者:HelloGitHub-秦人 HelloGitHub 推出的<讲解开源项目>系列,今天给大家带来一款阿里开源的 Java 诊断利器 Art ...
- C++语法小记---一个有趣的现象
下面的代码会飞吗? #include <iostream> #include <string> using namespace std; class Test { public ...
- Python编程无师自通PDF高清完整版免费下载|百度网盘
百度网盘:Python编程无师自通PDF高清完整版免费下载 提取码:cx73 内容介绍 畅销Python编程类入门书,美国亚马逊Kindle编程类排行榜榜一. 作者从文科毕业,通过自学编程转行为专业程 ...
- Java Web(2)-jQuery下
一.jQuery的属性操作 html() 它可以设置和获取起始标签和结束标签中的内容,跟 dom 属性 innerHTML 一样. text() 它可以设置和获取起始标签和结束标签中的文本, 跟 do ...
- pandas之数值计算与统计
数值计算与统计 对于DataFrame来说,求和.最大.最小.平均等统计方法,默认是按列进行统计,即axis = 0,如果添加参数axis = 1则会按照行进行统计. 如果存在空值,在统计时默认会忽略 ...