摘要:路径生成是表关联方式确定的主要阶段,本文介绍了几个影响路径生成的要素:cost_param, scan方式,join方式,stream方式,并从原理上分析如何干预路径的生成。

一、cost模型选择

顾名思义,cost_param是控制cost相关的一个参数。在了解cost_param之前,先回顾一下选择率的概念,GaussDB优化器中的选择率是指,当一个表有一个过滤或关联条件时,通过该条件能被选中的行数占总行数的比例,是介于0~1之间的一个实数。选择率在优化器中是一个重要的概念,主要应用于行数和distinct值的估算,行数和distinct值是计划生成中的基本要素。

首先,我们来看带有过滤条件的基表行数如何估算。如果一个表只有一个过滤条件,那么以选择率乘以表的行数,即可得到过滤完的行数;如果有多个过滤条件,那么就需要算出一个综合的选择率,如何计算?方式有二:一是通过多列统计信息直接计算,二是通过组合单列的选择率。那么组合的方式就由参数cost_param决定了,具体地,

举一个例子,TPC-H 1x的part表,过滤条件是:p_brand = 'Brand#45' and p_container = 'WRAP CASE',查看不同cost_param下的过滤后行数。

(1)cost_param=0

(2)cost_param=2

从估算出的行数(E-rows)和实际的行数(A-rows)对比可以看出,cost_param=0的不相关模型适合part表的p_brand和p_container列。

其次,Join的行数怎么估算的呢?原理跟过滤条件的行数估算是类似的,如果没有多列统计信息可以使用,则也需要单独计算每个条件的选择率,然后计算出综合选择率,得出行数。例如 TPC-H 1x lineitem和orders关联,关联条件是:l_orderkey = o_orderkey and o_custkey = l_suppkey,不同cost_param的执行情况如下:

(1)cost_param=0

(2)cost_param=2

此例中,Join的列之间也适合完全相关模型,这与l_orderkey和l_suppkey的分布是吻合的。

由于TPC-H的模型接近完全不相关模型,因此cost_param=0模型可以较好的描述场景,实际应用中,用户可以根据具体业务场景来调整模型,行数估算的准确性是计划生成的重要保证,在调优中检查估算的最直接的地方。GaussDB会在后续版本中新增更多的模型供业务需求选择。

二、Scan方式的选择

GaussDB中扫描方式主要分顺序扫描和索引扫描,每种扫描方式都对应若干扫描算子,顺序扫描在行列存中对应的扫描算子分别是Seq Scan和CStore Scan算子(下面我们讨论中不加区分)。这些扫描算子大部分都可以通过开关来进行调控,例如Seq Scan,如果设置enable_seqscan=off,则表示不会优先选择Seq Scan,而不是一定不会选。扫描方式的选择,很大程度上决定了获取基表数据的路径。我们以如下的例子来说明:

select l_orderkey, o_custkey from lineitem, orders where l_orderkey = o_orderkey;

lineitem分布键是l_orderkey,并且在l_orderkey上有index,orders分布键是o_orderkey。默认情况下,Scan的方式如下:

两个表都是顺序扫描的路径,关联方式选择了Hash Join。如果把Seq Scan关掉(enable_seqscan=off),计划如下:

lineitem的扫描变成了Index Only Scan(因为l_orderkey的类型是int),而在orders表上仍然选择Seq Scan(因为没有其他路径),同时关联方式也变为了Nest Loop,因为Hash Join需要全表扫描数据(lineitem的Seq Scan已经被关掉了)。优化器的选择方式我们从代价(E-costs)一栏中也可以看出。再把Index Only Scan关掉,看看计划如何变化:

扫描路径都变为了Seq Scan,而且Seq Scan的代价都很大。此时既然都走了Seq Scan,为什么不选Hash Join呢,把Nest Loop关掉,看看Hash Join计划的代价:

从代价上看出Hash Join的总代价比Nest Loop的小,但优化器没有选择Hash Join,这是因为优化器比较路径代价时,会比较Startup和Total代价,即启动代价和总代价,综合考虑,E-costs栏中显示的是总代价。把explain_perf_mode设置为normal,查看原Nest Loop的启动代价:

红框中的两个cost,分别是启动代价和总代价,在看Hash Join的cost,明显Hash Join的启动代价比Nest Loop的大很多(启动代价代表了输出第一条数据的代价),优化器在比较路径时,综合了这两个代价,最终推荐了Nest Loop的路径。

从上面的例子可以看出,扫描路径的调控,可以改变路径生成,合理的搭配是生成最优计划的前提,默认情况下,GaussDB优化器可以根据现有的路径选择(如上面的lineitem有两条扫描路径,orders只有一条扫描路径),最后确定出最优的一条。两条路径代价比较时,总代价不是唯一要素,但总代价越小,一般也会越容易被选中。

三、关联方式的选择

GaussDB优化器中表关联的主要方式有:Nest Loop,Hash Join和Merge Join,分别可以通过enable_nestloop、enable_hashjoin、enable_mergejoin进行控制,这种控制也不是绝对的,可以理解为是否优先选择。大部分场景下,三种路径的代价关系:Hash Join < Merge Join < Nest Loop。我们以一个简单的关联示例说明,store_returns和store_sales是TPC-DS 1x中两个表,SQL如下:

select count(*) from store_returns, store_sales where sr_customer_sk = ss_customer_sk;

默认情况下,优化器推荐Hash Join路径,计划如下:

如果把Hash Join关掉,则优化器选择了Merge Join路径:

如果再把Merge Join路径关掉,可能就会选择Nest Loop路径。关联方式的控制开关一般用于调优或规避问题,但具体是否能够起作用要看具体的语句,除了当前关联方式,还有没有其他方式。实际场景中,一个语句中关联的算子较多,一般很难用参数enable_hashjoin或enable_nestloop或enable_mergejoin来控制某两个表的Join方式,GaussDB中更细致的语句级别的调优手段是Plan Hint,感兴趣的读者可以参考产品手册。

四、Stream方式的选择

Stream算子是GaussDB分布式执行的关键算子之一,主要起到网络传输的作用,概要介绍可以参考:GaussDB(DWS)性能调优系列实战篇一:十八般武艺之总体调优策略。Stream算子由参数enable_stream_operator控制,如果关掉Stream算子,则可能导致生成不下推的计划,例如:

因为lineitem表关联的键l_partkey不是lineitem的分布键,需要添加Stream算子,但Stream功能被禁,于是只能生成不下推计划。

GaussDB计划中常见的主要Stream算子包括Redistribute、Broadcast和Gather。Gather一般是分布式计划中,CN用于收集DN的数据进行最后的处理,除非最后收集的行数非常多,这个算子涉及性能问题一般较少。Redistribute和Broadcast一是对“互补”的算子,前者用于重分布,后者用于广播,生成计划时,优化器会根据代价大小来选择。当Join Key没有包含表的分布键的时候,一般会添加Redistribute路径,能选择Redistribute路径理论上也可选择Broadcast路径,最终选择哪条路径要看优化器估算的代价是多少。这两个算子可以通过参数enable_redistribute和enable_broadcast进行控制。

在SMP开启的情况下,当并行度(dop)大于1时,一般还会有Local Redistribute、Split Redistribute、Local Broadcast和Split Broadcast;当倾斜优化开启时,还有PART REDISTRIBUTE PART ROUNDROBIN、PART_REDISTRIBUTE_PART_BROADCAST、PART_REDISTERIBUTE_PART_LOCAL等等,这些也是Stream算子,主要就是重分布、广播、RoundRobin的一些扩展形式,这里我们不一一介绍了,感兴趣的读者可以参考GaussDB DWS 产品手册。

我们考虑两个表的简单关联,store_sales和sr_tbl,它们的分布键分别是ss_item_sk 和sr_returned_date_sk,Join 条件是store_sales.ss_customer_sk =sr_tbl. sr_customer_sk,执行结果如下:

由于两个表的分布键都不是Join Key,因此走Hash Join路径的话需要有一个表做Broadcast或者两个表都做Redistribute,但是store_sales表比较大(E-rows显示28.7亿行),而sr_tbl表行数估算比较少(E-rows显示100行),优化器认为适合做Broadcast。于是最终选择了一边Broadcast的计划。

对于这个计划,由于sr_tbl表统计信息不准确(如果是中间结果集,则表示中间结果集估算不准),一种调优的方法是,将sr_tbl的表统计信息重新收集准确一些(如果sr_tbl是中间结果集,则无法收集),另一种方法是让sr_tbl走Redistribute路径,而后者我们又有两种方式来实现,一是用Plan Hint,即在生成计划时,告诉优化器走Redistribute路径,二是把Broadcast关掉。禁用Broadcast后,执行计划如下:

本列中,开启了SMP自适应,即优化器会根据系统资源和当前Active SQL数量来自行决定并行度(dop),如果Redistribute和Broadcast选择不当,则可能导致

(1)Broadcast计划会出现下盘

(2)两个计划的并行度不一样,最终执行时间可能会差异比较大。

对于Stream方式的控制,一般的调优方式有Plan Hint、GUC参数、改善统计信息或估算信息。

五、结束语

本文介绍的cost_param属于cost底层参数,建议对数据特征和使用场景比较熟悉的DBA慎重使用。Scan、Join、Stream调控的基本依据也是代价,代价一般体现在执行耗时上,调优时可从Performance中识别出性能的瓶颈点,分析选择的算子是否与代价匹配。另外,除了本文介绍的Session级别的控制参数外,还有基表、中间结果的行数,也可以通过Plan Hint进行语句级别的调控,感兴趣读者可通过GaussDB DWS产品文档进一步了解。

本文分享自华为云社区《GaussDB(DWS)性能调优系列实战篇五:十八般武艺之路径干预》,原文作者:- 大道至简 - 。

点击关注,第一时间了解华为云新鲜技术~

十八般武艺玩转GaussDB(DWS)性能调优:路径干预的更多相关文章

  1. 十八般武艺玩转GaussDB(DWS)性能调优:SQL改写

    摘要:本文将系统介绍在GaussDB(DWS)系统中影响性能的坏味道SQL及SQL模式,帮助大家能够从原理层面尽快识别这些坏味道SQL,在调优过程中及时发现问题,进行整改. 数据库的应用中,充斥着坏味 ...

  2. 十八般武艺玩转GaussDB(DWS)性能调优(三):好味道表定义

    摘要:表结构设计是数据库建模的一个关键环节,表定义好坏直接决定了集群的有效容量以及业务查询性能,本文从产品架构.功能实现以及业务特征的角度阐述在GaussDB(DWS)的中表定义时需要关注的一些关键因 ...

  3. 数据库性能调优之始: analyze统计信息

    摘要:本文简单介绍一下什么是统计信息.统计信息记录了什么.为什么要收集统计信息.怎么收集统计信息以及什么时候收集统计信息. 1 WHY:为什么需要统计信息 1.1 query执行流程 下图描述了Gau ...

  4. JVM 性能调优实战之:一次系统性能瓶颈的寻找过程

    玩过性能优化的朋友都清楚,性能优化的关键并不在于怎么进行优化,而在于怎么找到当前系统的性能瓶颈.性能优化分为好几个层次,比如系统层次.算法层次.代码层次…JVM 的性能优化被认为是底层优化,门槛较高, ...

  5. MySQL性能调优与架构设计——第 15 章 可扩展性设计之Cache与Search的利用

    第 15 章 可扩展性设计之Cache与Search的利用 前言: 前面章节部分所分析的可扩展架构方案,基本上都是围绕在数据库自身来进行的,这样是否会使我们在寻求扩展性之路的思维受到“禁锢”,无法更为 ...

  6. sql server性能调优

    转自:https://www.cnblogs.com/woodytu/tag/%E6%80%A7%E8%83%BD%E8%B0%83%E4%BC%98%E5%9F%B9%E8%AE%AD/defaul ...

  7. 大厂运维必备技能:PB级数据仓库性能调优

    摘要:众所周知,数据量大了之后,性能是大家关注的一点,所以我们在业务开发的时候,特别关注性能,做为一个架构师,必须对性能要了解,要懂.才能设计出高性能的业务系统. 一.GaussDB分布式架构 所谓集 ...

  8. String 既然能做性能调优,我直呼内行

    码哥,String 还能优化啥?你是不是框我? 莫慌,今天给大家见识一下不一样的 String,从根上拿捏直达 G 点. 并且码哥分享一个例子:通过性能调优我们能实现百兆内存轻松存储几十 G 数据. ...

  9. web前端性能调优

    最近2个月一直在做手机端和电视端开发,开发的过程遇到过各种坑.弄到快元旦了,终于把上线了.2个月干下来满满的的辛苦,没有那么忙了自己准备把前端的性能调优总结以下,以方便以后自己再次使用到的时候得于得心 ...

随机推荐

  1. 重磅!Panda Global获悉立陶宛下周将发行区块链数字货币!

    近日,Panda Global从路透社获悉,立陶宛将在下周开始预售2.4万枚由央行发行的数字货币.该名为LBCoin的数字货币基于区块链技术生产,也是该国试点具有国家支持背景的数字货币和区块链技术的项 ...

  2. 题解-FJOI2018 领导集团问题

    题面 FJOI2018 领导集团问题 给一棵树 \(T(|T|=n)\),每个点有个权值 \(w_i\),从中选出一个子点集 \(P=\{x\in {\rm node}|x\in T\}\),使得 \ ...

  3. Acwing 120. 防线

    题目地址 题目简译:给定\(n\)个等差数列,每个等差数列的起点为\(s\),终点为\(e\),差为\(d\).整个序列中至多有一个位置所占数字是奇数.判断奇数位是否存在,如果不存在输出"T ...

  4. sql server如何把退款总金额拆分到尽量少的多个订单中

    一.问题 原来有三个充值订单,现在要退款450元,如何分配才能让本次退款涉及的充值订单数量最少?具体数据参考下图: 二.解决方案 Step 1:对可退金额进行降序排列,以便优先使用可退金额比较大的订单 ...

  5. 字节跳动内部微服务架构-Docker实战学习笔记分享 真香

    前言 基于 Spring Cloud 的微服务设计和开发,已经越来越多地得到了更多企业的推广和应用,而 Spring Cloud 社区也在不断的迅速发展壮大之中,近几年时间,Spring Cloud ...

  6. 记一次 HBase Master is initializing 问题处理

    问题 hbase shell中建立建表出错 分析 org.apache.hadoop.hbase.PleaseHoldException: Master is initializing代表Master ...

  7. 使用caddy实现非标准端口https

    近来使用Halo搭建博客,并顺便把WeHalo小程序也把玩了起来,但是发现几个非常棘手的问题: 根据访问日志发现有三方在刷取关键接口的请求,http请求在部分情况下会暴露出很显著的安全问题: 小程序强 ...

  8. js上 五、运算符-1

    5.1.认识运算符 什么是运算符? 运算符用于执行程序代码运算,会针对一个以上操作数项目来进行运算. 运算符的应用: 购物车:计算总价,数量: **Js ** 中有哪些运算符? 算术运算符.赋值运算符 ...

  9. vue第十七单元(电商项目逻辑处理,电商划分)

    第十七单元(电商项目逻辑处理,电商划分) #课程目标 1.什么是电商项目 2.什么是B2B,B2C,C2C模式,常见的电商项目 3.移动端电商项目常见的逻辑处理 4.[知识扩展]传统系统架构及分布式系 ...

  10. PSO 粒子群算法

    注:本人参考http://www.cnblogs.com/tiandsp/category/348031.html来实现的 算法步骤: 1.首先确定粒子个数与迭代次数. 2.对每个粒子随机初始化位置与 ...