kafka的配置分为 broker、producter、consumer三个不同的配置

一 、BROKER 的全局配置
最为核心的三个配置 broker.id、log.dir、zookeeper.connect 。

------------------------------------------- 系统 相关 -------------------------------------------

##每一个broker在集群中的唯一标示,要求是正数。在改变IP地址,不改变broker.id的话不会影响consumers
broker.id =1

##kafka数据的存放地址,多个地址的话用逗号分割 /tmp/kafka-logs-1,/tmp/kafka-logs-2
log.dirs = /tmp/kafka-logs

##提供给客户端响应的端口
port =6667

##消息体的最大大小,单位是字节
message.max.bytes =1000000

## broker 处理消息的最大线程数,一般情况下不需要去修改
num.network.threads =3

## broker处理磁盘IO 的线程数 ,数值应该大于你的硬盘数
num.io.threads =8

## 一些后台任务处理的线程数,例如过期消息文件的删除等,一般情况下不需要去做修改
background.threads =4

## 等待IO线程处理的请求队列最大数,若是等待IO的请求超过这个数值,那么会停止接受外部消息,算是一种自我保护机制
queued.max.requests =500

##broker的主机地址,若是设置了,那么会绑定到这个地址上,若是没有,会绑定到所有的接口上,并将其中之一发送到ZK,一般不设置
host.name

## 打广告的地址,若是设置的话,会提供给producers, consumers,其他broker连接,具体如何使用还未深究
advertised.host.name

## 广告地址端口,必须不同于port中的设置
advertised.port

## socket的发送缓冲区,socket的调优参数SO_SNDBUFF
socket.send.buffer.bytes =100*1024

## socket的接受缓冲区,socket的调优参数SO_RCVBUFF
socket.receive.buffer.bytes =100*1024

## socket请求的最大数值,防止serverOOM,message.max.bytes必然要小于socket.request.max.bytes,会被topic创建时的指定参数覆盖
socket.request.max.bytes =100*1024*1024
  

------------------------------------------- LOG 相关 -------------------------------------------

## topic的分区是以一堆segment文件存储的,这个控制每个segment的大小,会被topic创建时的指定参数覆盖
log.segment.bytes =1024*1024*1024

## 这个参数会在日志segment没有达到log.segment.bytes设置的大小,也会强制新建一个segment 会被 topic创建时的指定参数覆盖
log.roll.hours =24*7

## 日志清理策略 选择有:delete和compact 主要针对过期数据的处理,或是日志文件达到限制的额度,会被 topic创建时的指定参数覆盖
log.cleanup.policy = delete

## 数据存储的最大时间 超过这个时间 会根据log.cleanup.policy设置的策略处理数据,也就是消费端能够多久去消费数据
## log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖
log.retention.minutes=7days

##指定日志每隔多久检查看是否可以被删除,默认1分钟
log.cleanup.interval.mins=1


## topic每个分区的最大文件大小,一个topic的大小限制 = 分区数*log.retention.bytes 。-1没有大小限制
## log.retention.bytes和log.retention.minutes任意一个达到要求,都会执行删除,会被topic创建时的指定参数覆盖
log.retention.bytes=-1

## 文件大小检查的周期时间,是否处罚 log.cleanup.policy中设置的策略
log.retention.check.interval.ms=5minutes

## 是否开启日志压缩
log.cleaner.enable=false

## 日志压缩运行的线程数
log.cleaner.threads =1

## 日志压缩时候处理的最大大小
log.cleaner.io.max.bytes.per.second=None

## 日志压缩去重时候的缓存空间 ,在空间允许的情况下,越大越好
log.cleaner.dedupe.buffer.size=500*1024*1024

## 日志清理时候用到的IO块大小 一般不需要修改
log.cleaner.io.buffer.size=512*1024

## 日志清理中hash表的扩大因子 一般不需要修改
log.cleaner.io.buffer.load.factor =0.9

## 检查是否处罚日志清理的间隔
log.cleaner.backoff.ms =15000

## 日志清理的频率控制,越大意味着更高效的清理,同时会存在一些空间上的浪费,会被topic创建时的指定参数覆盖
log.cleaner.min.cleanable.ratio=0.5

## 对于压缩的日志保留的最长时间,也是客户端消费消息的最长时间,同log.retention.minutes的区别在于一个控制未压缩数据,一个控制压缩后的数据。会被topic创建时的指定参数覆盖
log.cleaner.delete.retention.ms =1day

## 对于segment日志的索引文件大小限制,会被topic创建时的指定参数覆盖
log.index.size.max.bytes =10*1024*1024

## 当执行一个fetch操作后,需要一定的空间来扫描最近的offset大小,设置越大,代表扫描速度越快,但是也更好内存,一般情况下不需要搭理这个参数
log.index.interval.bytes =4096

## log文件"sync"到磁盘之前累积的消息条数
## 因为磁盘IO操作是一个慢操作,但又是一个"数据可靠性"的必要手段
## 所以此参数的设置,需要在"数据可靠性"与"性能"之间做必要的权衡.
## 如果此值过大,将会导致每次"fsync"的时间较长(IO阻塞)
## 如果此值过小,将会导致"fsync"的次数较多,这也意味着整体的client请求有一定的延迟.
## 物理server故障,将会导致没有fsync的消息丢失.
log.flush.interval.messages=None

## 检查是否需要固化到硬盘的时间间隔
log.flush.scheduler.interval.ms =3000

## 仅仅通过interval来控制消息的磁盘写入时机,是不足的.
## 此参数用于控制"fsync"的时间间隔,如果消息量始终没有达到阀值,但是离上一次磁盘同步的时间间隔
## 达到阀值,也将触发.
log.flush.interval.ms = None

## 文件在索引中清除后保留的时间 一般不需要去修改
log.delete.delay.ms =60000

## 控制上次固化硬盘的时间点,以便于数据恢复 一般不需要去修改
log.flush.offset.checkpoint.interval.ms =60000
  

------------------------------------------- TOPIC 相关 -------------------------------------------

## 是否允许自动创建topic ,若是false,就需要通过命令创建topic
auto.create.topics.enable =true

## 一个topic ,默认分区的replication个数 ,不得大于集群中broker的个数
default.replication.factor =1

## 每个topic的分区个数,若是在topic创建时候没有指定的话 会被topic创建时的指定参数覆盖
num.partitions =1

实例 --replication-factor3--partitions1--topic replicated-topic :名称replicated-topic有一个分区,分区被复制到三个broker上。
  

----------------------------------复制(Leader、replicas) 相关 ----------------------------------

## partition leader与replicas之间通讯时,socket的超时时间
controller.socket.timeout.ms =30000

## partition leader与replicas数据同步时,消息的队列尺寸
controller.message.queue.size=10

## replicas响应partition leader的最长等待时间,若是超过这个时间,就将replicas列入ISR(in-sync replicas),并认为它是死的,不会再加入管理中
replica.lag.time.max.ms =10000

## 如果follower落后与leader太多,将会认为此follower[或者说partition relicas]已经失效
## 通常,在follower与leader通讯时,因为网络延迟或者链接断开,总会导致replicas中消息同步滞后
## 如果消息之后太多,leader将认为此follower网络延迟较大或者消息吞吐能力有限,将会把此replicas迁移
## 到其他follower中.
## 在broker数量较少,或者网络不足的环境中,建议提高此值.
replica.lag.max.messages =4000

##follower与leader之间的socket超时时间
replica.socket.timeout.ms=30*1000

## leader复制时候的socket缓存大小
replica.socket.receive.buffer.bytes=64*1024

## replicas每次获取数据的最大大小
replica.fetch.max.bytes =1024*1024

## replicas同leader之间通信的最大等待时间,失败了会重试
replica.fetch.wait.max.ms =500

## fetch的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会阻塞,直到满足条件
replica.fetch.min.bytes =1

## leader 进行复制的线程数,增大这个数值会增加follower的IO
num.replica.fetchers=1

## 每个replica检查是否将最高水位进行固化的频率
replica.high.watermark.checkpoint.interval.ms =5000

## 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker
controlled.shutdown.enable =false

## 控制器关闭的尝试次数
controlled.shutdown.max.retries =3

## 每次关闭尝试的时间间隔
controlled.shutdown.retry.backoff.ms =5000

## 是否自动平衡broker之间的分配策略
auto.leader.rebalance.enable =false

## leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡
leader.imbalance.per.broker.percentage =10

## 检查leader是否不平衡的时间间隔
leader.imbalance.check.interval.seconds =300

## 客户端保留offset信息的最大空间大小
offset.metadata.max.bytes
  

----------------------------------ZooKeeper 相关----------------------------------

##zookeeper集群的地址,可以是多个,多个之间用逗号分割 hostname1:port1,hostname2:port2,hostname3:port3
zookeeper.connect = localhost:2181

## ZooKeeper的最大超时时间,就是心跳的间隔,若是没有反映,那么认为已经死了,不易过大
zookeeper.session.timeout.ms=6000

## ZooKeeper的连接超时时间
zookeeper.connection.timeout.ms =6000

## ZooKeeper集群中leader和follower之间的同步实际那
zookeeper.sync.time.ms =2000
配置的修改
其中一部分配置是可以被每个topic自身的配置所代替,例如
新增配置
bin/kafka-topics.sh --zookeeper localhost:2181--create --topic my-topic --partitions1--replication-factor1--config max.message.bytes=64000--config flush.messages=1

修改配置
bin/kafka-topics.sh --zookeeper localhost:2181--alter --topic my-topic --config max.message.bytes=128000

删除配置 :
bin/kafka-topics.sh --zookeeper localhost:2181--alter --topic my-topic --deleteConfig max.message.bytes
  

二 、CONSUMER 配置

最为核心的配置是group.id、zookeeper.connect
## Consumer归属的组ID,broker是根据group.id来判断是队列模式还是发布订阅模式,非常重要
group.id

## 消费者的ID,若是没有设置的话,会自增
consumer.id

## 一个用于跟踪调查的ID ,最好同group.id相同
client.id = group id value

## 对于zookeeper集群的指定,可以是多个 hostname1:port1,hostname2:port2,hostname3:port3 必须和broker使用同样的zk配置
zookeeper.connect=localhost:2182

## zookeeper的心跳超时时间,查过这个时间就认为是dead消费者
zookeeper.session.timeout.ms =6000

## zookeeper的等待连接时间
zookeeper.connection.timeout.ms =6000

## zookeeper的follower同leader的同步时间
zookeeper.sync.time.ms =2000

## 当zookeeper中没有初始的offset时候的处理方式 。smallest :重置为最小值 largest:重置为最大值 anythingelse:抛出异常
auto.offset.reset = largest

## socket的超时时间,实际的超时时间是:max.fetch.wait + socket.timeout.ms.
socket.timeout.ms=30*1000

## socket的接受缓存空间大小
socket.receive.buffer.bytes=64*1024

##从每个分区获取的消息大小限制
fetch.message.max.bytes =1024*1024

## 是否在消费消息后将offset同步到zookeeper,当Consumer失败后就能从zookeeper获取最新的offset
auto.commit.enable =true

## 自动提交的时间间隔
auto.commit.interval.ms =60*1000

## 用来处理消费消息的块,每个块可以等同于fetch.message.max.bytes中数值
queued.max.message.chunks =10

## 当有新的consumer加入到group时,将会reblance,此后将会有partitions的消费端迁移到新
## 的consumer上,如果一个consumer获得了某个partition的消费权限,那么它将会向zk注册
##"Partition Owner registry"节点信息,但是有可能此时旧的consumer尚没有释放此节点,
## 此值用于控制,注册节点的重试次数.
rebalance.max.retries =4

## 每次再平衡的时间间隔
rebalance.backoff.ms =2000

## 每次重新选举leader的时间
refresh.leader.backoff.ms

## server发送到消费端的最小数据,若是不满足这个数值则会等待,知道满足数值要求
fetch.min.bytes =1

## 若是不满足最小大小(fetch.min.bytes)的话,等待消费端请求的最长等待时间
fetch.wait.max.ms =100

## 指定时间内没有消息到达就抛出异常,一般不需要改
consumer.timeout.ms = -1
  

三、 PRODUCER 的配置

比较核心的配置:metadata.broker.list、request.required.acks、producer.type、serializer.class
## 消费者获取消息元信息(topics, partitions and replicas)的地址,配置格式是:host1:port1,host2:port2,也可以在外面设置一个vip
metadata.broker.list

##消息的确认模式
##0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP
##1:发送消息,并会等待leader 收到确认后,一定的可靠性
## -1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性
request.required.acks =0

## 消息发送的最长等待时间
request.timeout.ms =10000

## socket的缓存大小
send.buffer.bytes=100*1024

## key的序列化方式,若是没有设置,同serializer.class
key.serializer.class

## 分区的策略,默认是取模
partitioner.class=kafka.producer.DefaultPartitioner

## 消息的压缩模式,默认是none,可以有gzip和snappy
compression.codec = none

## 可以针对默写特定的topic进行压缩
compressed.topics=null

## 消息发送失败后的重试次数
message.send.max.retries =3

## 每次失败后的间隔时间
retry.backoff.ms =100

## 生产者定时更新topic元信息的时间间隔 ,若是设置为0,那么会在每个消息发送后都去更新数据
topic.metadata.refresh.interval.ms =600*1000

## 用户随意指定,但是不能重复,主要用于跟踪记录消息
client.id=""

------------------------------------------- 消息模式 相关 -------------------------------------------
## 生产者的类型 async:异步执行消息的发送 sync:同步执行消息的发送
producer.type=sync

## 异步模式下,那么就会在设置的时间缓存消息,并一次性发送
queue.buffering.max.ms =5000

## 异步的模式下 最长等待的消息数
queue.buffering.max.messages =10000

## 异步模式下,进入队列的等待时间 若是设置为0,那么要么进入队列,要么直接抛弃
queue.enqueue.timeout.ms = -1

## 异步模式下,每次发送的最大消息数,前提是触发了queue.buffering.max.messages或是queue.buffering.max.ms的限制
batch.num.messages=200
## 消息体的系列化处理类 ,转化为字节流进行传输
serializer.class= kafka.serializer.DefaultEncoder

转载:https://www.cnblogs.com/alan319/p/8651434.html

kafka配置文件详解的更多相关文章

  1. Hadoop生态圈-Kafka配置文件详解

    Hadoop生态圈-Kafka配置文件详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.默认kafka配置文件内容([yinzhengjie@s101 ~]$ more /s ...

  2. kafka实战教程(python操作kafka),kafka配置文件详解

    kafka实战教程(python操作kafka),kafka配置文件详解 应用往Kafka写数据的原因有很多:用户行为分析.日志存储.异步通信等.多样化的使用场景带来了多样化的需求:消息是否能丢失?是 ...

  3. ES之七:配置文件详解

    安装流程 http://www.elasticsearch.org/overview/elkdownloads/下载对应系统的安装包(我下载的是tar的),下载解压以后运行es根目录下bin目录的el ...

  4. 《从0到1学习Flink》—— Flink 配置文件详解

    前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...

  5. Flink 从 0 到 1 学习 —— Flink 配置文件详解

    前面文章我们已经知道 Flink 是什么东西了,安装好 Flink 后,我们再来看下安装路径下的配置文件吧. 安装目录下主要有 flink-conf.yaml 配置.日志的配置文件.zk 配置.Fli ...

  6. quartz配置文件详解

    quartz配置文件详解(转载)     quartz学习总结: 一.关于job:    用Quartz的行话讲,作业是一个执行任务的简单Java类.任务可以是任何Java代码.只需你实现org.qu ...

  7. WebConfig配置文件详解

    今天看到博客园一位朋友整理的一个WebConfig配置文件详解,觉得不错,转载一下: <?xml version="1.0"?> <!--注意: 除了手动编辑此文 ...

  8. tomcat配置文件详解

    Tomcat系列之服务器的安装与配置以及各组件详解   tomcat 配置文件详解

  9. ubuntu nginx 安装以及配置文件详解

    1.到nginx官网下载源码包.最好下载稳定版本,nginx官网http://www.nginx.org/ 2.安装nginx依赖包运行命令: sudo apt-get install libssl- ...

随机推荐

  1. Nginx 前端项目配置 包含二级目录和接口代理

    Nginx是目前用的比较多的一个前端服务器 其优点是配置简单修改一下server就能用 并发性能比较好,具体怎么好就看这个吧 开撸 1.找到nginx (liunx系统,已安装) whereis ng ...

  2. 未读消息(小红点),前端与 RabbitMQ实时消息推送实践,贼简单~

    前几天粉丝群里有个小伙伴问过:web 页面的未读消息(小红点)怎么实现比较简单,刚好本周手头有类似的开发任务,索性就整理出来供小伙伴们参考,没准哪天就能用得上呢. 之前在 <springboot ...

  3. Oracle12C配置对外访问

    Oracle12C配置对外访问 第一步: 开放端口或者关闭防火墙 第二步: 配置Oracle net manager打开Net manager 修改为共享服务器 第三步: 配置连接数打开Databas ...

  4. 外包公司派遣到网易,上班地点网易大厦,转正后工资8k-10k,13薪,包三餐,值得去吗?

    作为一个人,我们必须时时刻刻清醒地看待自己,做到不卑不亢才能坚强地活下去. 请肆无忌惮地点赞吧,微信搜索[沉默王二]关注这个在九朝古都洛阳苟且偷生的程序员.本文 GitHub github.com/i ...

  5. 从通达信导出文件获取A股所有股票代号名称(至2020年2月24日)

    下文是讲述如何从通达信的输出文件中获得股票信息,如果想用Java爬虫从网页爬取信息请参考:https://www.cnblogs.com/xiandedanteng/p/12808381.html 要 ...

  6. MvvmLight框架使用入门(5)

    上一次写MvvmLight框架使用入门(4)的时候还在用Visual Studio 2015,我儿子也不会过来盖上我的XPS……重启这个系列一方面是因为最近又开始写UWP的东西了,另一个是因为Mvvm ...

  7. 源码解读 TDengine 中线程池的实现

    这篇文章中提到了 tsched 的源码可以一读,所以去阅读了一下,总共220来行. 1. 阅读前工作 通过上文了解到这段程序实现的是一个任务队列,同时带有线程池.这段程序是计算机操作系统里经典的con ...

  8. [LeetCode] 139. 单词拆分(DP)

    题目 给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词. 说明: 拆分时可以重复使用字典中的单词. 你可以假设字典中没 ...

  9. 1. QCamera2基础组件——cam_semaphore

    /* Copyright (c) 2012, The Linux Foundation. All rights reserved. * * Redistribution and use in sour ...

  10. 熬夜23天吃透,九大核心专题,成功收割了阿里、百度、美团3家offer

    前言 今年受疫情影响非常大,春招和金三银四都要比往年来得更迟一些.春招结束之后,我特意把自己的面试经历顺了顺,总结出了不少的经验.对了,这次一共收割了3个大厂offer,分别是蚂蚁金服.美团和网易,特 ...