基于最邻近算法的分类,本质上是对离散的数据标签进行预测,实际上,最邻近算法也可以用于对连续的数据标签进行预测,这种方法叫做基于最邻近数据的回归,预测的值(即数据的标签)是连续值,通过计算数据点最临近数据点平均值而获得预测值。

一,sklearn的knn回归

scikit-learn实现了两个不同的最邻近回归模型:

  • KNeighborsRegressor:根据每个查询点的最邻近的k个数据点的均值作为预测值,其中,k是用户指定的整数。
  • RadiusNeighborsRegressor:基于查询点的固定半径内的数据点的均值作为预测值,其中r是用户指定的浮点值。

回归模拟器的定义如下,该定义只列出最重要的参数,详细参数请参考sicikit-learn 官网:

sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='auto', metric='minkowski',...)
sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, weights='uniform', algorithm='auto', metric='minkowski',...)

参数注释:

  • radius:寻找的半径、
  • n_neighbors:最邻近的邻居数量
  • algorithm:寻找最邻近的数据点的算法,有效值是['auto','ball_tree','kd_tree','brute']
  • metric:计算距离的度量,详细信息请查看:DistanceMetric
  • weights:权重,默认值weights ='uniform',为每个邻居分配统一的权重。 weights ='distance'分配的权重与距查询点的距离成反比。用于也可以提供定义函数来计算权重。在某些情况下,最好对邻居加权,以使较近的邻居对拟合的贡献更大,这可以通过weights关键字完成。

最基本的最邻近回归使用统一的权重,也就是说,在特定范围中的每个数据点对查询点的分类(回归)的作用是相同的。在某些情况下,对权重点进行加权可能会比较有利,以使邻近的点比远离的点对回归的贡献更大,这可以通过weights关键字完成。默认值weights ='uniform',为所有点分配相等的权重。 weights ='distance'分配的权重与距查询点的距离成反比。

二,基于最邻近的数据点的数量来预测

当使用knn计算某个数据点的预测值时,模型会从训练数据集中选择离该数据点最近的k个数据点,并且把它们的y值取均值,把该均值作为新数据点的预测值:

from sklearn.neighbors import KNeighborsRegressor

对于knn分类,使用score方法评估模型,对于回归的问题,返回的是R^2分数,R^2分数也叫做决定系数,是回归模型预测的优度度量,位于0到1之间,R^2等于1对应完美预测,R^2等于0对应于常数模型,即总是预测训练集响应(y_train)的均值。

from sklearn.datasets import make_regression
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import train_test_split kng=KNeighborsRegressor(n_neighbors=5) x_data,y_data=make_regression(n_features=1,n_informative=1,noise=50,random_state=1)
x_train,x_test,y_train,y_test=train_test_split(x_data,y_data,random_state=1) kng.fit(x_train,y_train)
prediction=kng.predict(x_test) kng_test_score=kng.score(x_test,y_test)
kng_train_score=kng.score(x_train,y_train)

print('test data score:{:.2f}'.format(kng_test_score))

三,knn回归模型的优缺点

knn回归有两个重要的参数:最邻近数据点的数量k,数据点之间距离的度量方法。

在实践中,通常使用较小的k值,在knn分类中通常把k值设置为奇数,便于找到多数邻居的标签。默认的距离度量是欧式距离,它在多数情况下的效果都很好,除此之外,还有曼哈顿距离等,详细信息,请阅读《Scipy 学习第3篇:数字向量的距离计算》。

在确定knn回归或knn分类的k值时,可以通过折叠交叉验证来寻找最佳的k值,示例代码如下:

from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV #通过网络方式来获取参数 # 导入iris数据集
iris2=datasets.load_iris()
X2=iris2.data
y2=iris2.target
print(X2.shape,y2.shape) # 设置需要搜索的K值,'n_neightbors'是sklearn中KNN的参数
parameters={'n_neightbors':[1,3,5,7,9,11,13,15]}
knn=KNeighborsClassifier()#注意:这里不用指定参数 # 通过GridSearchCV来搜索最好的K值。这个模块的内部其实就是对每一个K值进行评估
clf=GridSearchCV(knn,parameters,cv=5) #5折
clf.fit(X2,y2) # 输出最好的参数以及对应的准确率
print("最终最佳准确率:%.2f"%clf.best_score_,"最终的最佳K值",clf.best_params_)

knn回归模型的优点之一是模型很容易理解,通常不需要过多的调参就可以得到不错的性能,并且构建模型的速度通常很快。但是使用knn算法时,对数据进行预处理是很重要的,对特征很多的数据集、对于大多数特征值都为0的数据集,效果往往不是很好。

虽然k邻近算法很容易理解,但是由于预测速度慢,且不能处理具有很多特征的数据集,所以,在实践中往往不会用到。

参考文档:

sklearn.neighbors.KNeighborsRegressor

机器学习 第5篇:knn回归的更多相关文章

  1. 吴裕雄 python 机器学习——KNN回归KNeighborsRegressor模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import neighbors, datasets from skle ...

  2. 机器学习系列(3)_逻辑回归应用之Kaggle泰坦尼克之灾

    作者:寒小阳 && 龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49797143 ht ...

  3. 机器学习笔记(4):多类逻辑回归-使用gluton

    接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...

  4. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  5. K-NN回归算法

    from sklearn.datasets import load_iris import numpy as np import matplotlib.pyplot as plt iris = loa ...

  6. scikit-learn中机器学习模型比较(逻辑回归与KNN)

    本文源自于Kevin Markham 的模型评估:https://github.com/justmarkham/scikit-learn-videos/blob/master/05_model_eva ...

  7. 机器学习 第五篇:分类(kNN)

    K最近邻(kNN,k-NearestNeighbor)算法是一种监督式的分类方法,但是,它并不存在单独的训练过程,在分类方法中属于惰性学习法,也就是说,当给定一个训练数据集时,惰性学习法简单地存储或稍 ...

  8. 用Python开始机器学习(7:逻辑回归分类) --好!!

    from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到 ...

  9. SVM(支持向量机)与统计机器学习 & 也说一下KNN算法

    因为SVM和统计机器学习内容很多,所以从 http://www.cnblogs.com/charlesblc/p/6188562.html 这篇文章里面分出来,单独写. 为什么说SVM和统计学关系很大 ...

随机推荐

  1. springmvc与mybatis整合时 java.lang.IllegalArgumentException: Property 'sqlSessionFactory' or 'sqlSessionTemplate' are required 异常

    今天在整合springmvc与mybatis时,启动服务器遇到这样一个问题, by: java.lang.IllegalArgumentException: Property 'sqlSessionF ...

  2. 获取豆瓣读书所有热门标签并保存到mongodb数据库

    目标url:https://book.douban.com/tag/?view=type&icn=index-sorttags-all 目的:抓取所有标签名称(tag_name),标签链接(t ...

  3. C++中memset函数的用法

    转载:https://blog.csdn.net/qq_22122811/article/details/52738029 //复习数组的时候,第一次见到了memset,学之. memset:char ...

  4. 【题解】[NOI2011]阿狸的打字机

    阿狸的打字机 \(\text{Solution:}\) 首先观察三种操作:一种是插入一个字符,一种是退回上一步(回到父亲节点). 所以,我们可以对操作串进行模拟,并处理出每一个串在树上的位置. 接下来 ...

  5. WebStrom配置TypeScript开发环境

    安装NodeJS node.js下载地址:https://nodejs.org/en/download/ 安装TypeScript npm install typescripot -g 新建tscon ...

  6. 一文搞懂PV、UV、VV、IP及其关系与计算

    写在前面 十一长假基本上过去了,很多小伙伴在假期当中还是保持着持续学习的心态,也有不少小伙伴在微信上问我,让我推送相关的文章.这个时候,我都是抽空来整理小伙伴们的问题,然后,按照顺序进行推文. PS: ...

  7. 白话解析:一致性哈希算法 consistent hashing【转】

    学习一致性哈希算法原理的时候看到博主朱双印的一片文章,看完就懂,大佬! 白话解析:一致性哈希算法 consistent hashing

  8. ORA-00018: maximum number of sessions exceeded 超出最大会话数

    ORA-00018: maximum number of sessions exceededORA-00018: 超出最大会话数 Cause:       All session state obje ...

  9. spring-boot-route(十四)整合Kafka

    在上一章中SpringBoot整合RabbitMQ,已经详细介绍了消息队列的作用,这一种我们直接来学习SpringBoot如何整合kafka发送消息. kafka简介 kafka是用Scala和Jav ...

  10. shell-变量的数值运算let内置命令

    1. let命令的用法 格式: let 赋值表达式 [注]let赋值表达式功能等同于:((赋值表达式))  范例1:给自变量i加8 [root@1-241 scripts]# i=2 [root@1- ...