洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP
题目描述
有一棵点数为 \(n\) 的树,树边有边权。给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \(k\) 个点,将其染成黑色,并将其他 的 \(n−k\) 个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。
输入格式
第一行包含两个整数 \(n,k\)。
第二到 \(n\) 行每行三个正整数 \(fr,to,dis\)表示该树中存在一条长度为 \(dis\) 的边 \((fr, to)\)。输入保证所有点之间是联通的。
输出格式
输出一个正整数,表示收益的最大值。
输入输出样例
输入 #1
3 1
1 2 1
1 3 2
输出 #1
3
说明/提示
对于 \(100\%\) 的数据,\(0≤n,k≤2000\)
分析
很好想的一个树形\(dp\)是设\(f[i][j]\)为当前以\(i\)节点为根的子树中选了\(j\)个黑点所贡献的最大价值
注意状态的定义,是贡献多少而不是总和为多少,因此我们当前只需要考虑新加入的这条边的贡献
即边权乘以两边的白点数量之积+边权乘以两边的黑点数量之积
剩下的做一个树上的背包即可
下面我们来考虑复杂度的问题
递归中有两层循环,看起来似乎是\(n^3\)
但是它的复杂度实际上是\(n^2\)的
因为我们递归到某一个点时,枚举的是以这个点为\(LCA\)的所有点对
而每一个点对只有一个\(LCA\)
一个节点数为\(n\)的树最多有\(n^2\)个这样的点对
因此复杂度为\(n^2\)
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
inline int read(){
int x=0,fh=1;
char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') fh=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*fh;
}
const int maxn=2005;
int n,k,tot=1,head[maxn];
struct asd{
int from,to,next,val;
}b[maxn<<1];
void ad(int aa,int bb,int cc){
b[tot].from=aa;
b[tot].to=bb;
b[tot].next=head[aa];
b[tot].val=cc;
head[aa]=tot++;
}
int siz[maxn];
long long f[maxn][maxn];
void dfs(int now,int fa){
siz[now]=1;
for(int i=head[now];i!=-1;i=b[i].next){
int u=b[i].to;
if(u==fa) continue;
dfs(u,now);
for(int j=siz[now];j>=0;j--){
for(int kk=siz[u];kk>=0;kk--){
long long nans=1LL*f[now][j]+f[u][kk]+1LL*b[i].val*kk*(k-kk)+1LL*b[i].val*(siz[u]-kk)*((n-k)-(siz[u]-kk));
f[now][j+kk]=std::max(f[now][j+kk],nans);
}
}
siz[now]+=siz[u];
}
}
int main(){
memset(head,-1,sizeof(head));
n=read(),k=read();
for(int i=1;i<n;i++){
int aa,bb,cc;
aa=read(),bb=read(),cc=read();
ad(aa,bb,cc),ad(bb,aa,cc);
}
dfs(1,0);
printf("%lld\n",f[1][k]);
return 0;
}
洛谷 P3177 [HAOI2015]树上染色 树形DP的更多相关文章
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷 P3177 [HAOI2015]树上染色
题目链接 题目描述 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个 ...
- 洛谷P3177 [HAOI2015]树上染色(树上背包)
题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- BZOJ4033或洛谷3177 [HAOI2015]树上染色
BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- 洛谷 3177 [HAOI2015] 树上染色
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
随机推荐
- Linux的VMWare中Centos7用户和用户管理三个系统文件(/etc/passwd-shadow-group解读)和批量创建用户user及用户工作环境path
Linux 用户和用户组管理 用户工作环境PATH Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用 ...
- SpringCloud启动异常Stopping service [Tomcat]
问题场景: 领导让我搭建一套Jenkins实现自动化部署,项目是SpringCloud项目,配置的过程很顺利,给我提供了一台服务器做部署测试(服务器以前是做dev环境,很长时间没人用了) 我把所有项目 ...
- Qt 乱码
个人认识: 乱码的原因: 在编写代码时-->文件的格式--->编译器对文件进行编译的时候看到的只是二进制(乱码就出现在这里) 应合适方法 通知编译器(为什么说通知编译器呢?因为个人觉得这样 ...
- Android布局——单复选框(今天上课的内容总结下)
怎么感觉最近补充的都是监听器的内容,今天学长提了一个新的监听器,看起来很牛批(因为很长) // 添加文本更改的监听器, TextWatcher是监听器的回调接口 text.addTextChanged ...
- 修改mac系统名字&&神秘bogon
问题分析 你是否遇见过突然终端突然出现奇怪 bogon # name @ bogon in ~ [22:31:01] $ 这是因为终端会先向 DNS 请求查询当前 IP 的反向域名解析的结果,如果查询 ...
- PMP各种图比较记忆
1.控制图:监控过程是否稳定,是否具有可预测的绩效,在问题还未发生时解决.需要关注控制图中的平均值.控制界限.规格界限的含义.控制上.下限一般设为±3个西格玛.过程失控的情况包括数据点在控制界限外,以 ...
- java web 下载文件 response.setHeader()的用法 (转载)
response.setHeader()的用法 response.setHeader()下载中文文件名乱码问题 收藏 1. HTTP消息头 (1)通用信息头 即能用于请求消息中,也能用于响应信息中,但 ...
- C++二分查找:lower_bound( )和upper_bound( )
#include<algorithm>//头文件 //标准形式 lower_bound(int* first,int* last,val); upper_bound(int* first, ...
- 2020-06-18:ZK的分布式锁怎么实现?
福哥答案2020-06-18: Zk分布式锁有两种实现方式一种比较简单,应对并发量不是很大的情况.获得锁:创建一个临时节点,比如/lock,如果成功获得锁,如果失败没获得锁,返回false释放锁:删除 ...
- Vscode+Picgo+github+Markdown Preview Enhanced实现Markdown一键上传图床以及导出pdf文件
目录 安装Vscode 安装及配置Picgo插件 安装Markdown Preview Enhance 安装Vscode 安装Vscode(不解释了) 安装及配置Picgo插件 在github中新建仓 ...