一、集合的定义方法及特点

1、特点:

  (1)由不同元素组成

#集合由不同元素构成
s={1,2,3,3,4,3,3,}
print(s)#运行结果:{1, 2, 3, 4}

  (2)集合无序

#集合无序
s={'lilei','liuhua','alax','bob','bbb','bob'}
print(s)#运行结果:{'bob', 'liuhua', 'bbb', 'alax', 'lilei'}

  (3)集合只能存放数字、字符串和元祖(即不可变类型)

#集合只能存放不可变类型
s={'alax',12,[1,2],('bab')}#[1,2]为列表类型
print(s)

  运行结果:

2、定义方式

  类型一:s={ }

  类型二:s=set( )

s=set('hel')
print(s)#输出结果:{'h', 'l', 'e'}

二、集合的内置方法

1、.add( )     添加(不可添加相同元素)

#添加
s1={1,2,3}
s1.add('alax')
print(s1)#输出结果:{1, 2, 3, 'alax'}
s2={1,2,3}
s2.add(3)
print(s2)#输出结果:{1, 2, 3}

2、.clear( )    清空、.copy( )   拷贝

#清空、拷贝
s={1,2,3}
s1={'baba'}
s.clear()
print(s)#输出结果:set()
s1.copy()
print(s1)#输出结果:{'baba'}

3、删除 .pop( ) 随机删除   .remove( )指定删除——>元素不存在会报错   .discard( )指定删除——>元素不存在不会报错

#删除
s1={'ax',1,2,3}
s1.pop()
print(s1)#运行结果:{1, 'ax', 2}
s2={'ax',1,2,3}
s2.remove('ax')
print(s2)#运行结果:{1, 2, 3}
#s2.remove('axxx')
#print(s2)#不存在,运行结果报错
s3={'ax',1,2,3}
s3.discard('axxxx')
print(s3)#运行结果:{1, 2, 3, 'ax'},不存在但是不报错

二、集合关系运算、交叉,并集

1、基本关系运算

  现在我们举一个例子

  例:现在有同学'bob','alax','zh'学习Python,有同学'bob','zh'学习Linux,用列表统计处即学习Python也学习Linux的同学名单。

  解答:此题使用列表解决有三种写法,如下所示:

#列表举例
python_l=['bob','alax','zh']
linux_l=['zh','bob'] # #方法一:
# for i in python_l:
# for j in linux_l:
# if i==j:
# print(i)#运行结果:['bob', 'zh'] # #方法二:
# for name_l in python_l:
# if name_l in linux_l:
# print(name_l)#运行结果:['bob', 'zh'] #方法三:
python_l_and_linux_l=[]
for name_l in python_l:
if name_l in linux_l:
python_l_and_linux_l.append(name_l)
print(python_l_and_linux_l)#运行结果:['bob', 'zh']

  现在我们用集合来解决此类问题:

如上图所示,求即学习Python_l和Linux_l的同学,即求交集部分

(1)交集,A.intersection(B) A与B的交集  或者 A&B

  例题所示代码表示为:

python_l=['bob','alax','zh']
linux_l=['zh','bob']
#——————转化为集合形式——————————
p_l=set(python_l)
l_l=set(linux_l)
#——————求两个集合的交集————————
print(p_l.intersection(l_l))#运行结果:{'zh', 'bob'}
print(p_l&l_l)#运行结果:{'zh', 'bob'}

  补充:交集更新  A.intersection_updata(B)

(2)并集,A.union(B)  A与B的并集 或者A|B

#集合求并集
python_l=['bob','alax','zh']
linux_l=['zh','bob','hahah']
#——————转化为集合形式——————————
p_l=set(python_l)
l_l=set(linux_l)
#——————求两个集合的并集————————
print(p_l.union(l_l))#运行结果:{'alax', 'hahah', 'zh', 'bob'}
print(p_l|l_l)#运行结果:{'alax', 'hahah', 'zh', 'bob'}

(3)差集:即A中存在但是B中不存在的元素  A.diference(B)   或者  A-B或者B-A

#集合求差集
python_l=['bob','alax','zh']
linux_l=['zh','bob','hahah']
#——————转化为集合形式——————————
p_l=set(python_l)
l_l=set(linux_l)
#——————求两个集合的差集————————
print(p_l-l_l)#运行结果:{'alax'}
print(l_l-p_l)#运行结果:{'hahah'}
print(p_l.difference(l_l))#运行结果:{'alax'}

  图解如下:

  补充:差集更新

python_l=['bob','alax','zh','hghg']
linux_l=['zh','bob','hahah','hghg','hhhh']
#——————转化为集合形式——————————
p_l=set(python_l)
l_l=set(linux_l)
p_l.difference_update(l_l)
print(p_l)#运行结果:{'alax'}

(4)交叉补集   A.symmetric_difference(B)  或者  A^B

#交叉补集
python_l=['bob','alax','zh']
linux_l=['zh','bob','hahah']
#——————转化为集合形式——————————
p_l=set(python_l)
l_l=set(linux_l)
print(p_l.symmetric_difference(l_l))#运行结果:{'alax', 'hahah'}
print(p_l^l_l)#运行结果:{'alax', 'hahah'}

  图解如下:

2、其他关系运算

(1)判断两个集合的交集是否为空  A.isdisjoint(B)

s1={'kk','bb','zz'}
s2={'kk','ss','aa'}
s3={1,2,3}
result1=s1.isdisjoint(s2)
print(result1)#运行结果:False ——> 即交集不为空
result2=s1.isdisjoint(s3)
print(result2)#运行结果:True -->即交集为空

(2)判断两个集合的包含关系

  集合A>=B  A.issubset(B)       集合A<=B   A.issuperset(B)

s1={1,2,3}
s2={4,5,6,1,2,3}
result1=s1.issubset(s2)
print(result1)#运行结果:True
result2=s1.issuperset(s2)
print(result2)#运行结果:False
result3=s2.issuperset(s1)
print(result3)#运行结果:True

(3)更新  A.update(B)  

s1={1,2,5}
s2={7,8}
s1.update(s2)
print(s1)#运行结果:{1, 2, 5, 7, 8}

三、补充:

  集合是可变类型,当定义不可变集合时,可使用s=frozenset(**)

s=frozenset('hello')
print(s)#运行结果:frozenset({'l', 'o', 'h', 'e'})
#不可进行添加删除等操作

六、Python集合定义和基本操作方法的更多相关文章

  1. Python - 集合与元素之集合定义和基本操作方法

    集合(set) 定义:由不同元素组成的集合,集合中是一组无序排列可hash的值(不可变的值)例如数字.字符串.元组,可以作为字典的key 定义集合: # 定义集合 s = {1, 2, 3, 3, 3 ...

  2. python集合set{ }、集合函数及集合的交、差、并

    通过大括号括起来,用逗号分隔元素,特点 1.由不同元素组成,如果定义时存在相同元素,处理时会自动去重 2.无序 3.元素只能是不可变类型,即数字.字符串.布尔和元组,但集合本身可变 4.可直接定义集合 ...

  3. Python 集合set添加删除、交集、并集、集合操作符号

    在Python中集合set是基本数据类型的一种,它有可变集合(set)和不可变集合(frozenset)两种.创建集合set.集合set添加.集合删除.交集.并集.差集的操作都是非常实用的方法. 1. ...

  4. [转]python集合set

    Python中集合set是基本数据类型的一种,它有可变集合(set)和不可变集合(frozenset)两种.创建集合set.集合set添加.集合删除.交集.并集.差集的操作都是非常实用的方法. 来源网 ...

  5. python集合与字典的用法

    python集合与字典的用法 集合: 1.增加  add 2.删除   •del 删除集合 •discard(常用)删除集合中的元素  #删除一个不存在的元素不会报错 •remove 删除一个不存在的 ...

  6. 二十六. Python基础(26)--类的内置特殊属性和方法

    二十六. Python基础(26)--类的内置特殊属性和方法 ● 知识框架 ● 类的内置方法/魔法方法案例1: 单例设计模式 # 类的魔法方法 # 案例1: 单例设计模式 class Teacher: ...

  7. 十六. Python基础(16)--内置函数-2

    十六. Python基础(16)--内置函数-2 1 ● 内置函数format() Convert a value to a "formatted" representation. ...

  8. Python数据定义

    数据类型: 什么是数据? 在计算机科学中,数据是指所有能输入到计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字字母.符号和模拟量等的统称.现在计算机存储和处 ...

  9. Python 集合set()添加删除、交集、并集、集合操作详解

    集合:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次.每个元素的地位都是相同的,元素之间是无序的. 创建集合set python set类是在python的sets模块中,大家现在使 ...

随机推荐

  1. dd命令的详细介绍

    1.命令简介  dd 的主要选项: 指定数字的地方若以下列字符结尾乘以相应的数字: b=512, c=1, k=1024, w=2, xm=number m if=file #输入文件名,缺省为标准输 ...

  2. kubernets之从应用访问pod元数据以及其他资源

    一  downwardAPI的应用 1.1  前面我们介绍了如何通过configmap以及secret将配置传入到pod的容器中,但是传递的这些都是预先能够安排和只晓得,对于那些只有当pod创建起来之 ...

  3. Ubuntu安装Vivado

    Step1 安装必要的库文件: sudo apt install libncurses5 build-essential openjdk-11-jdk Step2 进入vivado的安装文件夹 sud ...

  4. 《进击吧!Blazor!》第一章 2.Hello Blazor

    第二次写专栏,开头还是不知道说什么,所以--先来段广告<进击吧!Blazor!>是本人与张善友老师合作的Blazor零基础入门系列视频,此系列能让一个从未接触过Blazor的程序员掌握开发 ...

  5. java进阶(33)--IO流

    一.IO流概念:1.基本概念2.IO流分类3.java.io流的四大家族4.流的close和flush方法5.java.id下常用的16个流 二.FileInputStream字节输入流1.FileI ...

  6. 零基础怎么学Python编程,新手常犯哪些错误?

    Python是人工智能时代最佳的编程语言,入门简单.功能强大,深获初学者的喜爱. 很多零基础学习Python开发的人都会忽视一些小细节,进而导致整个程序出现错误.下面就给大家介绍一下Python开发者 ...

  7. 转 3 jmeter的两种录制方法

      录制1-badboy(推荐) badboy是一款自动化测试工具,它可以完成简单的功能测试和性能测试.其实它是一款独立的测试工具,只不过它录制东西导出的格式适用于jmeter,所以我们经常把jmet ...

  8. 借助 AppleScript 一键打开工作空间

    我有个小毛病:同时只能在一个工程里工作. 假如让我开四五个 Webstorm,在工程里 A 改个Bug,然后又到工程 B 里加个需求,再去工程 C 发个版,切来切去一会儿就懵了. 于是有了这个项目:m ...

  9. Go Code Review Comments

    Go Code Review Comments https://golang.org/wiki/CodeReviewComments

  10. 监听套接字描述字 已连接套接字描述字 和打电话的情形非常不一样的地方 完成了 TCP 三次握手,操作系统内核就为这个客户生成一个已连接套接字

    1. accept: 电话铃响起了-- 当客户端的连接请求到达时,服务器端应答成功,连接建立,这个时候操作系统内核需要把这个事件通知到应用程序,并让应用程序感知到这个连接.这个过程,就好比电信运营商完 ...