JDK新特性——Stream代码简洁之道的详细用法
一、概述
Stream 是一组用来处理数组、集合的API,Stream API 提供了一种高效且易于使用的处理数据的方式。
Java 8 中之所以费这么大的功夫引入 函数式编程 ,原因有两个:
- 代码简洁函数式编程写出的代码简洁且意图明确,使用stream接口让你从此告别for循环。
- 多核友好,Java函数式编程使得编写并行程序从未如此简单,你需要的全部就是用用一下parallel()方法
- Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作
二、Stream特性
1、不是数据结构,没有内部存储,不会保存数据,故每个Stream流只能使用一次
2、不支持索引访问
3、支持并行
4、很容易生成数据或集合(List,Set)
5、支持过滤、查找、转换、汇总、聚合等操作
6、延迟计算,流在中间处理过程中,只是对操作进行了记录,并不会立即执行,需要等到执行终止操作的时候才会进行实际的计算
三、分类
关于应用在Stream流上的操作,可以分成两种:
- Intermediate(中间操作): 中间操作的返回结果都是Stream,故可以多个中间操作叠加;
- Terminal(终止操作): 终止操作用于返回我们最终需要的数据,只能有一个终止操作。
使用Stream流,可以清楚地知道我们要对一个数据集做何种操作,可读性强。而且可以很轻松地获取并行化Stream流,不用自己编写多线程代码,可以让我们更加专注于业务逻辑。
无状态: 指元素的处理不受之前元素的影响;
有状态: 指该操作只有拿到所有元素之后才能继续下去。
非短路操作: 指必须处理所有元素才能得到最终结果;
短路操作: 指遇到某些符合条件的元素就可以得到最终结果,如 A || B,只要A为true,则无需判断B的结果。
四、Stream的创建
1、通过数组来生成
2、通过集合来生成
3、通过Stream.generate
方法来创建
4、通过Stream.iterate
方法来创建
5、其他Api创建
4.1 通过数组来生成
//通过数组来生成
static void gen1(){
String[] strs = {"a","b","c","d"};
Stream<String> strs1 = Stream.of(strs);//使用Stream中的静态方法:of()
strs1.forEach(System.out::println);//打印输出(a、b、c、d)
}
4.2 通过集合来生成
//通过集合来生成
static void gen2(){
List<String> list = Arrays.asList("1","2","3","4");
Stream<String> stream = list.stream();//获取一个顺序流
stream.forEach(System.out::println);//打印输出(1,2,3,4)
}
4.3 通过Stream.generate方法来创建
//generate
static void gen3(){
Stream<Integer> generate = Stream.generate(() -> 1);//使用Stream中的静态方法:generate()
//limit 返回由该流的元素组成的流,截断长度不能超过maxSize
generate.limit(10).forEach(System.out::println);//打印输出(打印10个1)
}
4.4 通过Stream.iterate方法来创建
//使用iterator
static void gen4() {
Stream<Integer> iterate = Stream.iterate(1, x -> x + 1);//使用Stream中的静态方法:iterate()
iterate.limit(10).forEach(System.out::println);//打印输出(1,2,3,4,5,6,7,8,9,10)
}
4.4 其他Api创建
//其他方式
static void gen5(){
String str = "abcdefg";
IntStream stream =str.chars();//获取str 字节码
stream.forEach(System.out::println);//打印输出(97,98,99,100,101,102,103)
}
五、Stream的常用API
5.1 中间操作
1. filter: 过滤流中的某些元素
//中间操作:如果调用方法之后返回的结果是Stream对象就意味着是一个中间操作
Arrays.asList(1,2,3,4,5).stream()//获取顺序流
.filter((x)->x%2==0) // 2 4
.forEach(System.out::println);
//求出结果集中所有偶数的和
int count = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9).stream()//获取顺序流
.filter(x -> x % 2 == 0).// 2 4 6 8
mapToInt(x->x).sum();//求和
System.out.println(count); //打印输出 20
2. distinct: 通过流中元素的 hashCode() 和 equals() 去除重复元素
Arrays.asList(1,2,3,3,3,4,5,2).stream()//获取顺序流
.distinct()//去重
.forEach(System.out::println);// 打印输出(1,2,3,4,5)
System.out.println("去重:---------------");
Arrays.asList(1,2,3,3,3,4,5,2).stream()//获取顺序流
.collect(Collectors.toSet())//Set()去重
.forEach(System.out::println);// 打印输出(1,2,3,4,5)
3. 排序
sorted():
返回由此流的元素组成的流,根据自然顺序排序。
sorted(Comparator com):
返回由该流的元素组成的流,根据提供的 Comparator进行排序。
//获取最大值和最小值但是不使用min和max方法
List<Integer> list = Arrays.asList(1,2, 3,4, 5, 6);
Optional<Integer> min = list.stream().sorted().findFirst();//自然排序 根据数字从小到大排列
System.out.println(min.get());//打印输出(1)
Optional<Integer> max2 = list.stream().sorted((a, b) -> b - a).findFirst();//定时排序 根据最大数进行排序
System.out.println(max2.get());//打印输出(6)
//按照大小(a-z)排序
Arrays.asList("java","c#","python","scala").stream().sorted().forEach(System.out::println);
//按照长度排序
Arrays.asList("java","c#","python","scala").stream().sorted((a,b)->a.length()-b.length()).forEach(System.out::println);
4. 截取
limit(n):
返回由此流的元素组成的流,截短长度不能超过 n
skip(n):
在丢弃流的第n元素后,配合limit(n)可实现分页
//打印20-30这样的集合数据
Stream.iterate(1,x->x+1).limit(50)// limit 50 总共到50
.skip(20)// 跳过前 20
.limit(10) // 打印10个
.forEach(System.out::println);//打印输出(21,22,23,24,25,26,27,28,29,30)
5. 转换
map:
接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap:
接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
List<String> list = Arrays.asList("a,b,c", "1,2,3");
//将每个元素转成一个新的且不带逗号的元素
Stream<String> s1 = list.stream().map(s -> s.replaceAll(",", ""));
s1.forEach(System.out::println); // abc 123
Stream<String> s3 = list.stream().flatMap(s -> {
//将每个元素转换成一个stream
String[] split = s.split(",");
Stream<String> s2 = Arrays.stream(split);
return s2;
});
s3.forEach(System.out::println); // a b c 1 2 3
6. 消费
peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。
//将str中的每一个数值都打印出来,同时算出最终的求和结果
String str ="11,22,33,44,55";
System.out.println(Stream.of(str.split(",")).peek(System.out::println).mapToInt(Integer::valueOf).sum());//11 22 33 44 55 165
5.2 终止操作
1. 循环:forEach
Users类:
import java.util.Date;
/**
* @program: lambda
* @ClassName Users
* @description:
* @author: muxiaonong
* @create: 2020-10-24 11:00
* @Version 1.0
**/
public class Users {
private String name;
public Users() {}
/**
* @param name
*/
public Users(String name) {
this.name = name;
}
/**
* @param name
* @return
*/
public static Users build(String name){
Users u = new Users();
u.setName(name);
return u;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public String toString() {
return "name='" + name + '\'';
}
}
//创建一组自定义对象
String str2 = "java,scala,python";
Stream.of(str2.split(",")).map(x->new Users(x)).forEach(System.out::println);//打印输出(name='java' name='scala' name='python')
Stream.of(str2.split(",")).map(Users::new).forEach(System.out::println);//打印输出(name='java' name='scala' name='python')
Stream.of(str2.split(",")).map(x->Users.build(x)).forEach(System.out::println);//打印输出(name='java' name='scala' name='python')
Stream.of(str2.split(",")).map(Users::build).forEach(System.out::println);//打印输出(name='java' name='scala' name='python')
2. 计算:min、max、count、sum
min
:返回流中元素最小值
max
:返回流中元素最大值
count
:返回流中元素的总个数
sum
:求和
//求集合中的最大值
List<Integer> list = Arrays.asList(1,2, 3,4, 5, 6);
Optional<Integer> max = list.stream().max((a, b) -> a - b);
System.out.println(max.get()); // 6
//求集合的最小值
System.out.println(list.stream().min((a, b) -> a-b).get()); // 1
//求集合的总个数
System.out.println(list.stream().count());//6
//求和
String str ="11,22,33,44,55";
System.out.println(Stream.of(str.split(",")).mapToInt(x -> Integer.valueOf(x)).sum());
System.out.println(Stream.of(str.split(",")).mapToInt(Integer::valueOf).sum());
System.out.println(Stream.of(str.split(",")).map(x -> Integer.valueOf(x)).mapToInt(x -> x).sum());
System.out.println(Stream.of(str.split(",")).map(Integer::valueOf).mapToInt(x -> x).sum());
3. 匹配:anyMatch、 allMatch、 noneMatch、 findFirst、 findAny
anyMatch:
接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false
allMatch:
接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false
noneMatch:
接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false
findFirst:
返回流中第一个元素
findAny:
返回流中的任意元素
List<Integer> list = Arrays.asList(1,2, 3,4, 5, 6);
System.out.println(list.stream().allMatch(x -> x>=0)); //如果集合中的元素大于等于0 返回true
System.out.println(list.stream().noneMatch(x -> x > 5));//如果集合中的元素有大于5的元素。返回false
System.out.println(list.stream().anyMatch(x -> x > 4));//如果集合中有大于四4的元素,返回true
//取第一个偶数
Optional<Integer> first = list.stream().filter(x -> x % 10 == 6).findFirst();
System.out.println(first.get());// 6
//任意取一个偶数
Optional<Integer> any = list.stream().filter(x -> x % 2 == 0).findAny();
System.out.println(any.get());// 2
4.收集器:toArray、collect
collect:
接收一个Collector实例,将流中元素收集成另外一个数据结构
Collector<T, A, R>
是一个接口,有以下5个抽象方法:
Supplier<A> supplier();
创建一个结果容器ABiConsumer<A, T> accumulator();
:消费型接口,第一个参数为容器A,第二个参数为流中元素T。BinaryOperator<A> combiner();
函数接口,该参数的作用跟上一个方法(reduce)中的combiner参数一样,将并行流中各个子进程的运行结果(accumulator函数操作后的容器A)进行合并。Function<A, R> finisher();
函数式接口,参数为:容器A,返回类型为:collect方法最终想要的结果R。Set<Characteristics> characteristics();
返回一个不可变的Set集合,用来表明该Collector的特征
/**
* @program: lambda
* @ClassName Customer
* @description:
* @author: muxiaonong
* @create: 2020-10-24 11:36
* @Version 1.0
**/
public class Customer {
private String name;
private Integer age;
...getset忽略
}
public static void main(String[] args) {
Customer c1 = new Customer("张三",10);
Customer c2 = new Customer("李四",20);
Customer c3 = new Customer("王五",10);
List<Customer> list = Arrays.asList(c1,c2,c3);
//转成list
List<Integer> ageList = list.stream().map(Customer::getAge).collect(Collectors.toList());
System.out.println("ageList:"+ageList);//ageList:[10, 20, 10]
//转成set
Set<Integer> ageSet = list.stream().map(Customer::getAge).collect(Collectors.toSet());
System.out.println("ageSet:"+ageSet);//ageSet:[20, 10]
//转成map,注:key不能相同,否则报错
Map<String, Integer> CustomerMap = list.stream().collect(Collectors.toMap(Customer::getName, Customer::getAge));
System.out.println("CustomerMap:"+CustomerMap);//CustomerMap:{李四=20, 张三=10, 王五=10}
//字符串分隔符连接
String joinName = list.stream().map(Customer::getName).collect(Collectors.joining(",", "(", ")"));
System.out.println("joinName:"+joinName);//joinName:(张三,李四,王五)
//聚合操作
//1.学生总数
Long count = list.stream().collect(Collectors.counting());
System.out.println("count:"+count);//count:3
//2.最大年龄 (最小的minBy同理)
Integer maxAge = list.stream().map(Customer::getAge).collect(Collectors.maxBy(Integer::compare)).get();
System.out.println("maxAge:"+maxAge);//maxAge:20
//3.所有人的年龄
Integer sumAge = list.stream().collect(Collectors.summingInt(Customer::getAge));
System.out.println("sumAge:"+sumAge);//sumAge:40
//4.平均年龄
Double averageAge = list.stream().collect(Collectors.averagingDouble(Customer::getAge));
System.out.println("averageAge:"+averageAge);//averageAge:13.333333333333334
//分组
Map<Integer, List<Customer>> ageMap = list.stream().collect(Collectors.groupingBy(Customer::getAge));
System.out.println("ageMap:"+ageMap);//ageMap:{20=[com.mashibing.stream.Customer@20ad9418], 10=[com.mashibing.stream.Customer@31cefde0, com.mashibing.stream.Customer@439f5b3d]}
//分区
//分成两部分,一部分大于10岁,一部分小于等于10岁
Map<Boolean, List<Customer>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10));
System.out.println("partMap:"+partMap);
//规约
Integer allAge = list.stream().map(Customer::getAge).collect(Collectors.reducing(Integer::sum)).get();
System.out.println("allAge:"+allAge);//allAge:40
}
六、Stream的方法摘要
修饰符和类型 | 方法和说明 |
---|---|
static Collector<T,?,Double> | averagingDouble(ToDoubleFunction<? super T> mapper) 返回一个 Collector ,它产生应用于输入元素的双值函数的算术平均值。 |
static Collector<T,?,Double> | averagingInt(ToIntFunction<? super T> mapper) 返回一个 Collector ,它产生应用于输入元素的整数值函数的算术平均值。 |
static Collector<T,?,Double> | averagingLong(ToLongFunction<? super T> mapper) 返回一个 Collector ,它产生应用于输入元素的长值函数的算术平均值。 |
static <T,A,R,RR> Collector<T,A,RR> | collectingAndThen(Collector<T,A,R> downstream, Function<R,RR> finisher) 适应 Collector进行额外的整理转换。 |
static Collector<T,?,Long> | counting() 返回 Collector类型的接受元件 T计数输入元件的数量。 |
static <T,K> Collector<T,?,Map<K,List>> | groupingBy(Function<? super T,? extends K> classifier) 返回 Collector “由基团”上的类型的输入元件操作实现 T ,根据分类功能分组元素,并且在返回的结果 Map 。 |
static <T,K,A,D> Collector<T,?,Map<K,D>> | groupingBy(Function<? super T,? extends K> classifier, Collector<? super T,A,D> downstream) 返回 Collector “由基团”上的类型的输入元件操作实现级联 T ,根据分类功能分组元素,然后使用下游的指定执行与给定键相关联的值的归约运算 Collector 。 |
static <T,K,D,A,M extends Map<K,D>>Collector<T,?,M> | groupingBy(Function<? super T,? extends K> classifier, Supplier mapFactory, Collector<? super T,A,D> downstream) 返回 Collector “由基团”上的类型的输入元件操作实现级联 T ,根据分类功能分组元素,然后使用下游的指定执行与给定键相关联的值的归约运算 Collector 。 |
static <T,K> Collector<T,?,ConcurrentMap<K,List>> | groupingByConcurrent(Function<? super T,? extends K> classifier) 返回一个并发 Collector “由基团”上的类型的输入元件操作实现 T ,根据分类功能分组元素。 |
static <T,K,A,D> Collector<T,?,ConcurrentMap<K,D>> | groupingByConcurrent(Function<? super T,? extends K> classifier, Collector<? super T,A,D> downstream) 返回一个并发 Collector “由基团”上的类型的输入元件操作实现级联 T ,根据分类功能分组元素,然后使用下游的指定执行与给定键相关联的值的归约运算 Collector 。 |
static <T,K,A,D,M extends ConcurrentMap<K,D>> Collector<T,?,M> | groupingByConcurrent(Function<? super T,? extends K> classifier, Supplier mapFactory, Collector<? super T,A,D> downstream) 返回一个并发 Collector “由基团”上的类型的输入元件操作实现级联 T ,根据分类功能分组元素,然后使用下游的指定执行与给定键相关联的值的归约运算 Collector 。 |
static Collector<CharSequence,?,String> | joining() 返回一个 Collector ,按照遇到的顺序将输入元素连接到一个 String中。 |
static Collector<CharSequence,?,String> | joining(CharSequence delimiter) 返回一个 Collector ,按照遇到的顺序连接由指定的分隔符分隔的输入元素。 |
static Collector<CharSequence,?,String> | joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix) 返回一个 Collector ,它将按照指定的 Collector分隔的输入元素与指定的前缀和后缀进行连接。 |
static <T,U,A,R> Collector<T,?,R> | mapping(Function<? super T,? extends U> mapper, Collector<? super U,A,R> downstream) 适应一个 Collector类型的接受元件 U至类型的一个接受元件 T通过积累前应用映射函数到每个输入元素。 |
static Collector<T,?,Optional> | maxBy(Comparator<? super T> comparator) 返回一个 Collector ,它根据给出的 Comparator产生最大元素,描述为 Optional 。 |
static Collector<T,?,Optional> | minBy(Comparator<? super T> comparator) 返回一个 Collector ,根据给出的 Comparator产生最小元素,描述为 Optional 。 |
static Collector<T,?,Map<Boolean,List>> | partitioningBy(Predicate<? super T> predicate) 返回一个 Collector ,根据Predicate对输入元素进行 Predicate ,并将它们组织成 Map<Boolean, List> 。 |
static <T,D,A> Collector<T,?,Map<Boolean,D>> | partitioningBy(Predicate<? super T> predicate, Collector<? super T,A,D> downstream) 返回一个 Collector ,它根据Predicate对输入元素进行 Predicate ,根据另一个 Collector减少每个分区的值,并将其组织成 Map<Boolean, D> ,其值是下游缩减的结果。 |
static Collector<T,?,Optional> | reducing(BinaryOperator op) 返回一个 Collector ,它在指定的 Collector下执行其输入元素的 BinaryOperator 。 |
static Collector<T,?,T> | reducing(T identity, BinaryOperator op) 返回 Collector执行下一个指定的减少其输入元件的 BinaryOperator使用所提供的身份。 |
static <T,U> Collector<T,?,U> | reducing(U identity, Function<? super T,? extends U> mapper, BinaryOperator op) 返回一个 Collector ,它在指定的映射函数和 BinaryOperator下执行其输入元素的 BinaryOperator 。 |
static Collector<T,?,DoubleSummaryStatistics> | summarizingDouble(ToDoubleFunction<? super T> mapper) 返回一个 Collector , double生产映射函数应用于每个输入元素,并返回结果值的汇总统计信息。 |
static Collector<T,?,IntSummaryStatistics> | summarizingInt(ToIntFunction<? super T> mapper) 返回一个 Collector , int生产映射函数应用于每个输入元素,并返回结果值的汇总统计信息。 |
static Collector<T,?,LongSummaryStatistics> | summarizingLong(ToLongFunction<? super T> mapper) 返回一个 Collector , long生产映射函数应用于每个输入元素,并返回结果值的汇总统计信息。 |
static Collector<T,?,Double> | summingDouble(ToDoubleFunction<? super T> mapper) 返回一个 Collector ,它产生应用于输入元素的双值函数的和。 |
static Collector<T,?,Integer> | summingInt(ToIntFunction<? super T> mapper) 返回一个 Collector ,它产生应用于输入元素的整数值函数的和。 |
static Collector<T,?,Long> | summingLong(ToLongFunction<? super T> mapper) 返回一个 Collector ,它产生应用于输入元素的长值函数的和。 |
static <T,C extends Collection> Collector<T,?,C> | toCollection(Supplier collectionFactory) 返回一个 Collector ,按照遇到的顺序将输入元素累加到一个新的 Collection中。 |
static <T,K,U> Collector<T,?,ConcurrentMap<K,U>> | toConcurrentMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U> valueMapper) 返回一个并发的 Collector ,它将元素累加到 ConcurrentMap ,其键和值是将所提供的映射函数应用于输入元素的结果。 |
static <T,K,U> Collector<T,?,ConcurrentMap<K,U>> | toConcurrentMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U> valueMapper, BinaryOperator mergeFunction) 返回一个并发的 Collector ,它将元素累加到一个 ConcurrentMap ,其键和值是将提供的映射函数应用于输入元素的结果。 |
static <T,K,U,M extends ConcurrentMap<K,U>> | Collector<T,?,M> toConcurrentMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U> valueMapper, BinaryOperator mergeFunction, Supplier mapSupplier) 返回一个并发的 Collector ,它将元素累加到一个 ConcurrentMap ,其键和值是将所提供的映射函数应用于输入元素的结果。 |
static Collector<T,?,List> | toList() 返回一个 Collector ,它将输入元素 List到一个新的 List 。 |
static <T,K,U> Collector<T,?,Map<K,U>> | toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U> valueMapper) 返回一个 Collector ,它将元素累加到一个 Map ,其键和值是将所提供的映射函数应用于输入元素的结果。 |
static <T,K,U> Collector<T,?,Map<K,U>> | toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U> valueMapper, BinaryOperator mergeFunction) 返回一个 Collector ,它将元素累加到 Map ,其键和值是将提供的映射函数应用于输入元素的结果。 |
static <T,K,U,M extends Map<K,U>> Collector<T,?,M> | toMap(Function<? super T,? extends K> keyMapper, Function<? super T,? extends U> valueMapper, BinaryOperator mergeFunction, Supplier mapSupplier) 返回一个 Collector ,它将元素累加到一个 Map ,其键和值是将所提供的映射函数应用于输入元素的结果。 |
static Collector<T,?,Set> toSet() | 返回一个 Collector ,将输入元素 Set到一个新的 Set 。 |
总结
对于Java中新特性除了 Stream 还有lamaba表达式都是可以帮忙我们很好的去优化代码,使我们的代码简洁且意图明确,避免繁琐的重复性的操作,对于文中有兴趣的小伙伴可以操作起来,又不懂的小伙伴可以在下面进行留言,小农看到了会第一时间回复大家,谢谢,大家加油!
JDK新特性——Stream代码简洁之道的详细用法的更多相关文章
- JDK1.8新特性——Stream API
JDK1.8新特性——Stream API 摘要:本文主要学习了JDK1.8的新特性中有关Stream API的使用. 部分内容来自以下博客: https://blog.csdn.net/icarus ...
- JDK新特性关于流操作部分
// array 工具类 可以用来快捷的将数组转化为list List<String> strings = Arrays.asList("zhongguo", &quo ...
- Java8 新特性 Stream() API
新特性里面为什么要加入流Steam() 集合是Java中使用最多的API,几乎每一个Java程序都会制造和处理集合.集合对于很多程序都是必须的,但是如果一个集合进行,分组,排序,筛选,过滤...这些操 ...
- Java8 新特性 Stream 非短路终端操作
非短路终端操作 Java8 新特性 Stream 练习实例 非短路终端操作,就是所有的元素都遍厉完,直到最后才结束.用来收集成自己想要的数据. 方法有: 遍厉 forEach 归约 reduce 最大 ...
- Java8 新特性 Stream 短路终端操作
短路终端操作 Java8 新特性 Stream 练习实例 传入一个谓词,返回传为boolean,如果符合条件,则直接结束流. 匹配所有 allMatch 任意匹配 anymMatch 不匹配 none ...
- Java8 新特性 Stream 无状态中间操作
无状态中间操作 Java8 新特性 Stream 练习实例 中间无状态操作,可以在单个对单个的数据进行处理.比如:filter(过滤)一个元素的时候,也可以判断,比如map(映射)... 过滤 fil ...
- java新特性stream
java新特性stream,也称为流式编程. 在学习stream之前先了解一下java内置的四大函数 第一种函数式函数,后面是lambda表达式写法 /*Function<String,Inte ...
- 史上最全jdk新特性总结,涵盖jdk8到jdk15!
前言 在本文中,我将描述自第8版以来Java最重要且对开发人员友好的功能.为什么会有这样的主意?在Web上,您可以找到许多文章,其中包含每种Java版本的新功能列表.但是,由于缺少文章,因此无法简要概 ...
- 这可能是史上最好的 Java8 新特性 Stream 流教程
本文翻译自 https://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/ 作者: @Winterbe 欢迎关注个人微信公众 ...
随机推荐
- hystrix文档翻译之工作原理
流程图 下面的图片显示了一个请求在hystrix中的流程图. 1.构造一个HystrixCommand或者HystrixObservableCommand对象 第一步是创建一个HystrixComma ...
- 1.2Hadoop概述
- ServletContex对象学习
问题: 不同的用户使用相同的数据 解决: ServletContext对象 特点: 服务器创建 用户共享 作用域: 整个项目内 生命周期: 服务器启动到服务器关闭 使用: 1.获取SercvletCo ...
- C语言实现数据机构链表的基本操作(从键盘输入生成链表、读取数组生成链表)
利用头插法实现逆置 下面简单介绍一下,算法思想结合图示看 算法思想:"删除"头结点与链表其他结点的原有联系(即将头结点的指针置空),再逐个插入逆置链表的表头(即"头插&q ...
- tomcat在linux下安装
1.下载地址: https://tomcat.apache.org/download-90.cgi 2.上传linux 3.查看是否上传成功 4.解压: 5.进入后,查看README.md文件,可以查 ...
- linux与linux间,互相拷贝文件
直接使用scp命令 和远程Linux主机 进行文件的拷贝 1.可以将远程Linux系统上的文件拷贝到本地计算机 2.也可以将本地计算机上的文件拷贝到远程Linux系统上. 比如:我们要拷贝 ...
- Tomcat 中 catalina.out、catalina.log、localhost.log 和 access_log 的区别
打开 Tomcat 安装目录中的 log 文件夹,我们可以看到很多日志文件,这篇文章就来介绍下这些日记文件的具体区别. catalina.out 日志 catalina.out 日志文件是 Tomca ...
- 动态代理:jdk动态代理和cglib动态代理
/** * 动态代理类:先参考代理模式随笔,了解代理模式的概念,分为jdk动态代理和cglib,jdk动态代理是通过实现接口的方式创建代理类的,cglib是通过继承类的方式实现的代理类的 * jdk动 ...
- Centos-转换或复制文件-dd
dd 转换或复制文件,同时可以对设备进行备份 相关选项 if 输入文件,可以是设备 of 输出文件,可以是输出设备 bs 指定一个block大小,默认为 512字节 count 指定bs数量
- OneWire应用 单总线温度传感器DS18系列
OneWire DS18S20, DS18B20, DS1822 Temperature DS18B20 The DS18B20 digital thermometer provides 9-bit ...