吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记
第一周 机器学习(ML)策略(1)(ML strategy(1))
1.1 为什么是 ML 策略?(Why ML Strategy?)
希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法,可以指引朝着最有希望的方向前进。这门课中,我会分享我在搭建和部署大量深度学习产品时学到的经验和教训。比如说,很多大学深度学习课程很少提到这些策略。事实上,机器学习策略在深度学习的时代也在变化,因为现在对于深度学习算法来说能够做到的事情,比上一代机器学习算法大不一样。
1.2 正交化(Orthogonalization)
所以正交化的概念是指,可以想出一个维度,这个维度你想做的是控制转向角,还有另一个维度来控制你的速度,那么你就需要一个旋钮尽量只控制转向角,另一个旋钮,在这个开车的例子里其实是油门和刹车控制了你的速度。但如果你有一个控制旋钮将两者混在一 起,比如说这样一个控制装置同时影响你的转向角和速度,同时改变了两个性质,那么就很难令你的车子以想要的速度和角度前进。然而正交化之后,正交意味着互成 90 度。设计出 正交化的控制装置,最理想的情况是和你实际想控制的性质一致,这样你调整参数时就容易得多。可以单独调整转向角,还有你的油门和刹车,令车子以你想要的方式运动。
在机器学习中,如果你可以观察你的系统,然后说这一部分是错的,它在训练集上做的不好、在开发集上做的不好、它在测试集上做的不好,或者它在测试集上做的不错,但如果说成在现实世界中不好,这就不是很好,因为它不是正交。必须弄清楚到底是什么地方出问题了,然后我们刚好有对应的旋钮,或者一组对应的旋钮,刚好可以解决那个问题,那个限制了机器学习系统性能的问题。 可以快速诊断出系统性能瓶颈到底在哪。还有找到你可以用的一组特定的旋钮来调整你的系统,来改善它特定方面的性能。
1.3 单一数字评估指标(Single number evaluation metric)
查准率的定义是在你的分类器标记为猫的例子中,有多少真的是猫。
查全率就是,对于所有真猫的图片,你的分类器正确识别出了多少百分比。
使用查准率和查全率作为评估指标的时候,有个问题,如果分类器
吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记的更多相关文章
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...
- 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...
- 吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)
可能因为Andrew Ng用的是python3,而我是python2.7的缘故,我发现了坑.如下: 在辅助文件tf_utils.py中的random_mini_batches(X, Y, mini_b ...
- 吴恩达深度学习第1课第3周编程作业记录(2分类1隐层nn)
2分类1隐层nn, 作业默认设置: 1个输出单元, sigmoid激活函数. (因为二分类); 4个隐层单元, tanh激活函数. (除作为输出单元且为二分类任务外, 几乎不选用 sigmoid 做激 ...
- 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- Coursera 吴恩达 深度学习 学习笔记
神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...
- cousera 吴恩达 深度学习 第一课 第二周 作业 过拟合的表现
上图是课上的编程作业运行10000次迭代后,输出每一百次迭代 训练准确度和测试准确度的走势图,可以看到在600代左右测试准确度为最大的,74%左右, 然后掉到70%左右,再掉到68%左右,然后升到70 ...
随机推荐
- webstorm激活码2020--定期更新
2020年8月22日更新 一般错误关闭软件重填即可,key is invalid 错误需要恢复破解或者重装,才能使用 V8AF5QDT5R-eyJsaWNlbnNlSWQiOiJWOEFGNVFEVD ...
- WS以及NW小世界网络的生成(MATLAB)
WS小世界网络生成算法,一般小世界网络生成算法速度慢,节点度分布与数学推导不符,在网络仿真中造成不便,这里针对实际网络动力学仿真过程撰写了WS小世界网络的MATLAB生成算法,并考虑了矩阵化,具有较高 ...
- Java多线程_生产者消费者模式1
生产者消费者模型 具体来讲,就是在一个系统中,存在生产者和消费者两种角色,他们通过内存缓冲区进行通信,生产者生产消费者需要的资料,消费者把资料做成产品.生产消费者模式如下图.(图片来自网络 ...
- Kubernetes入门(二)——Dashboard 安装
Kubernetes集群搭建完成后,可以通过命令行方式可以了解集群资源的使用情况,但是这种方式比较笨拙且不直观,因此考虑给集群安装Dashboard,这样能更直观了解集群状态.本文Dashboard的 ...
- 真是没想到 Springboot + Flowable 工作流开发会这么简单
本文收录在个人博客:www.chengxy-nds.top,技术资料共享,同进步 程序员是块砖,哪里需要哪里搬 公司内部的OA系统最近要升级改造,由于人手不够就把我借调过去了,但说真的我还没做过这方面 ...
- day42:HTML标签和CSS选择器
目录 1.HTML 1.1 文档结构 1.2 head标签 1.3 body标签 1.3.1 h1-h6标签 1.3.2.br标签:换行 1.3.3.hr标签:一行横线 1.3.4 a标签:超链接标签 ...
- 在vue项目中使用scss
1.首先安装依赖 npm install node-sass sass-loader --save-dev 2.找到build中webpack.base.conf.js,在rules中添加scss规则 ...
- Mybatis通用Join的实现(最终版)
你是否还在为mybatis的多表关联查询而写xml烦恼,是否还在为动态组装查询条件烦恼,是否还在为此没有合适的解决方案烦恼? mybatis-extension插件,解决开发过程中需要多表关联时需手写 ...
- Visual Studio Installer闪退问题解决方法
Visual Studio 2019安装推荐的方式是通过官方给的Installer进行的(2017也是同样方法),但是有时会出现在”即将完成…一切即将准备就绪“这个界面闪退的问题,导致软件的安装.卸载 ...
- 避免nullpointer 空指针
来自知乎: 一般在服务器返回的数据上我们会做数据合法性检测,所以在api文档上需要注明字段的取值范围,然后客户端根据这个去做数据检测,缺段就直接走数据错误的流程,这个很大程度上避免了不少nullpoi ...