第一周 机器学习(ML)策略(1)(ML strategy(1))

1.1 为什么是 ML 策略?(Why ML Strategy?)

希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法,可以指引朝着最有希望的方向前进。这门课中,我会分享我在搭建和部署大量深度学习产品时学到的经验和教训。比如说,很多大学深度学习课程很少提到这些策略。事实上,机器学习策略在深度学习的时代也在变化,因为现在对于深度学习算法来说能够做到的事情,比上一代机器学习算法大不一样。

1.2 正交化(Orthogonalization)

所以正交化的概念是指,可以想出一个维度,这个维度你想做的是控制转向角,还有另一个维度来控制你的速度,那么你就需要一个旋钮尽量只控制转向角,另一个旋钮,在这个开车的例子里其实是油门和刹车控制了你的速度。但如果你有一个控制旋钮将两者混在一 起,比如说这样一个控制装置同时影响你的转向角和速度,同时改变了两个性质,那么就很难令你的车子以想要的速度和角度前进。然而正交化之后,正交意味着互成 90 度。设计出 正交化的控制装置,最理想的情况是和你实际想控制的性质一致,这样你调整参数时就容易得多。可以单独调整转向角,还有你的油门和刹车,令车子以你想要的方式运动。

在机器学习中,如果你可以观察你的系统,然后说这一部分是错的,它在训练集上做的不好、在开发集上做的不好、它在测试集上做的不好,或者它在测试集上做的不错,但如果说成在现实世界中不好,这就不是很好,因为它不是正交。必须弄清楚到底是什么地方出问题了,然后我们刚好有对应的旋钮,或者一组对应的旋钮,刚好可以解决那个问题,那个限制了机器学习系统性能的问题。 可以快速诊断出系统性能瓶颈到底在哪。还有找到你可以用的一组特定的旋钮来调整你的系统,来改善它特定方面的性能。

1.3 单一数字评估指标(Single number evaluation metric)

查准率的定义是在你的分类器标记为猫的例子中,有多少真的是猫。

查全率就是,对于所有真猫的图片,你的分类器正确识别出了多少百分比。

使用查准率和查全率作为评估指标的时候,有个问题,如果分类器

吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记的更多相关文章

  1. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  2. 吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)

    我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑: 第一坑 需将辅助文件 opt_utils.py 的 nitialize_param ...

  3. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  4. 吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)

    可能因为Andrew Ng用的是python3,而我是python2.7的缘故,我发现了坑.如下: 在辅助文件tf_utils.py中的random_mini_batches(X, Y, mini_b ...

  5. 吴恩达深度学习第1课第3周编程作业记录(2分类1隐层nn)

    2分类1隐层nn, 作业默认设置: 1个输出单元, sigmoid激活函数. (因为二分类); 4个隐层单元, tanh激活函数. (除作为输出单元且为二分类任务外, 几乎不选用 sigmoid 做激 ...

  6. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  7. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  8. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  9. Coursera 吴恩达 深度学习 学习笔记

    神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...

  10. cousera 吴恩达 深度学习 第一课 第二周 作业 过拟合的表现

    上图是课上的编程作业运行10000次迭代后,输出每一百次迭代 训练准确度和测试准确度的走势图,可以看到在600代左右测试准确度为最大的,74%左右, 然后掉到70%左右,再掉到68%左右,然后升到70 ...

随机推荐

  1. Nginx的Gzip功能

    什么是HTTP压缩 有时候客户端和服务器之间会传输比较大的报文数据,这时候就占用较大的网络带宽和时长.为了节省带宽,加速报文的响应速速,可以将传输的报文数据先进行压缩,然后再进行传输. HTTP支持多 ...

  2. 封装react antd的upload上传组件

    上传文件也是我们在实际开发中常遇到的功能,比如上传产品图片以供更好地宣传我们的产品,上传excel文档以便于更好地展示更多的产品信息,上传zip文件以便于更好地收集一些资料信息等等.至于为何要把上传组 ...

  3. kafka-clients 1.0 高阶API消费消息(未完)

    消费消息的请求(按序) org/apache/kafka/common/requests/RequestHeader org/apache/kafka/common/requests/ApiVersi ...

  4. 微信小程序setData局部刷新列表

    利用setData局部刷新列表 当列表管理加载到第几页时,这个list的数据有十几条的,如果重新setData的话就要重新刷新和渲染列表, 这是个比较麻烦的事,当数据量大时,就会造成白屏, 这时就要局 ...

  5. vue watch 和 computed 区别与使用

    目录 computed 和 watch 的说明 与 区别 computed 计算属性说明: watch 监听属性说明: watch 和 computed 的区别是: 使用 参考官方文档 compute ...

  6. Jmeter 常用函数(16)- 详解 __split

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.htm 作用 根据分隔符分割传递给它的字符串 语法格式 ...

  7. golang安装及vscode编辑器配置

    安装Go语言及搭建Go语言开发环境 下载 下载地址:https://studygolang.com/dl 系统选择: 根据不同系统下载安装包: 安装 Windows MAC安装 点开可执行程序 下一步 ...

  8. HM16.0 TAppEncoder

    参考:  https://www.cnblogs.com/tiansha/p/6458573.html https://blog.csdn.net/liangjiubujiu/article/deta ...

  9. 使用grub2引导进入Linux或Window系统

    很多人在一通烂搞之后把自己的grub搞崩了(比如我当时手贱删除了boot分区)虽然后来又装了grub,但是进入grub后还是没有引导,只有一个孤零零的命令行界面 这时候应该怎么办呢?首先当然是想进入系 ...

  10. Java数据结构——二叉树节点的增删改查、获取深度及最大最小值

    一.查找最大值 // 查找最大值 public static Node maxNode() { Node node = root; Node maxNode = node; while (node ! ...