BSOJ我也不知道在哪.

容易想到容斥。

考虑不合法的方案 想到强制某个点的度数为限制即可。

这样就变成了了总方案-一个不合法+两个不合法-3个......的模型了。

坑点 当强制两个相同的点时 方案数为0.

当 序列长度>n-2的时候 方案数为0.

注意一些边界条件啥的。这样的话利用爆搜就很好写了。

const ll MAXN=1000010;
ll n,len,m;
ll ans,fac[MAXN],inv[MAXN];
ll w[MAXN],du[MAXN],vis[MAXN];
inline ll C(ll a,ll b){return a<b?0:fac[a]*inv[b]%mod*inv[a-b]%mod;}
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline void dfs(ll x,ll sum,ll cnt,ll v)
{
if(x==m+1)
{
v=v*ksm(n-sum,n-2-cnt)%mod;
if(sum&1)ans=(ans-v)%mod;
else ans=(ans+v)%mod;
return;
}
dfs(x+1,sum,cnt,v);
if(du[x]-1<=n-2-cnt&&!vis[w[x]])
{
vis[w[x]]=1;
dfs(x+1,sum+1,cnt+du[x]-1,v*C(n-2-cnt,du[x]-1)%mod);
vis[w[x]]=0;
}
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(m);fac[0]=1;
rep(1,m,i)get(w[i]),get(du[i]);
rep(1,n,i)fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
dfs(1,0,0,1);putl((ans+mod)%mod);
return 0;
}

BSOJ 5553 wangyurzee的树 prufer序列 容斥的更多相关文章

  1. 【BZOJ4361】isn 动态规划+树状数组+容斥

    [BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...

  2. 【BZOJ4596】黑暗前的幻想乡(矩阵树定理,容斥)

    [BZOJ4596]黑暗前的幻想乡(矩阵树定理,容斥) 题面 BZOJ 有\(n\)个点,要求连出一棵生成树, 指定了一些边可以染成某种颜色,一共\(n-1\)种颜色, 求所有颜色都出现过的生成树方案 ...

  3. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  4. loj#6072 苹果树(折半搜索,矩阵树定理,容斥)

    loj#6072 苹果树(折半搜索,矩阵树定理,容斥) loj 题解时间 $ n \le 40 $ . 无比精确的数字. 很明显只要一个方案不超过 $ limits $ ,之后的计算就跟选哪个没关系了 ...

  5. BSOJ 5445 -- 【2018雅礼】树 prufer序列 dp

    BSOJ在哪我也不知道 没有链接. 对于有标号无根树的统计和有度数限制 一般采用prufer序列. 根据prufer序列 容易知道 某个点的出现次数+1为当前点的度数. 对于这道题 考虑设f[i][j ...

  6. 【BZOJ 4361】 4361: isn (DP+树状数组+容斥)

    4361: isn Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 218  Solved: 126 Description 给出一个长度为n的序列A( ...

  7. 洛谷P5206 [WC2019] 数树(生成函数+容斥+矩阵树)

    题面 传送门 前置芝士 矩阵树,基本容斥原理,生成函数,多项式\(\exp\) 题解 我也想哭了--orz rqy,orz shadowice 我们设\(T1,T2\)为两棵树,并定义一个权值函数\( ...

  8. BZOJ3589 动态树[树剖/暴力/容斥]

    操作0,显然直接线段树解决. 操作1,瓶颈在于重叠的链只算一次.在线段树上来看,如果一个区间被覆盖了,那么只算这个区间,子树里面也就不管了. 考虑对节点打标记来表示是否覆盖.但是,如果统一打完之后,并 ...

  9. 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥

    同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...

随机推荐

  1. 「疫期集训day10」玫瑰

    不管我们在怎么抵抗,德国都已经败了----失守苏瓦松后绝望中的德国兵 (貌似今天的题记和内容毫无关系) 觉得以后还是不要抱怨考试失误了,感觉没啥大用 T1暴搜/状压(然俄一看题很像刚写过的二分答案,上 ...

  2. mysql逗号分隔问题

    1.说明: 之前写了一个发先了有点问题, 用正则去匹配的会匹配多了数据,所以优化下 媒资表(asset_baseinfo)里面有地区,如下,如果一个节目包含多个地区,id存在如下 地区表(produc ...

  3. OutOfMemory相关问题(内存溢出异常OOM)

    OutOfMemory(内存溢出异常OOM) java.lang.OutOfMemoryError :Thrown when the Java Virtual Machine cannot alloc ...

  4. kubernetes系列(十二) - 存储之Secret

    1. Secret简介 2. Secret类型 3. Service Account 4. Opaque 4.1 Opaque类型说明 4.2 Opaque创建方式 4.2.1 命令行创建 4.2.2 ...

  5. mysql 存储引擎的选择

    MyISAM:如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性.并发性要求不是很高,选择这个存储引擎非常合适.MyISAM在Web.数据仓储和其他应用环境下最常使用的存储 ...

  6. python数据处理(一)之供机器读取的数据 csv,json,xml

    代码与资料 https://github.com/jackiekazil/data-wrangling 1 csv 1.1导入csv数据 1.2将代码保存到文件中并在命令行中运行 2.json 2 导 ...

  7. cnn卷积理解

    首先输入图像是28*28处理好的图. 第一层卷积:用5*5的卷积核进行卷积,输入为1通道,输出为32通道.即第一层的输入为:28*28图,第一层有32个不同的滤波器,对同一张图进行卷积,然后输出为32 ...

  8. CSS文本控制

    CSS文本控制 文本基础设置 字体设置 font-family可定义多个字体,系统会以从左至右的顺序进行查找,如左侧字体不存在,就往右侧找. 为什么要这么做呢?如果你只用了一种字体,而恰好人家电脑上没 ...

  9. linux目录结构 主流Linux发行版的目录结构

    目录 目录结构 一般教学的目录 CentOS7 openSUSE15.1 Ubuntu18.04 详细说明: /dev目录 /etc目录 /proc目录 /usr目录 /var目录 比较重要的目录 文 ...

  10. CentOS开机启动不了修复

    1,如果启动时进度条,先修改为日志启动 启动后快速按任何键(Enter除外)进入如下界面 在按e进入 选择第二个选项卡 在按e进入将红色部分 rhgb quiet 删除,然后按Enter,在按b重启 ...