系列传送门:

DelayQueue概述

DelayQueue是一个支持延时获取元素的无界阻塞队列,使用PriorityQueue来存储元素。

队中的元素必须实现Delayed接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)获取元素剩余时间【剩余时间 = 到期时间 - 当前时间】,每次向优先队列中添加元素时根据compareTo方法作为排序规则。

当从队列获取元素时,只有过期的元素才会出队列。

使用场景: 缓存系统设计、定时任务调度等。

类图及重要字段

public class DelayQueue<E extends Delayed> extends AbstractQueue<E>
implements BlockingQueue<E> {
// 独占锁实现同步
private final transient ReentrantLock lock = new ReentrantLock();
// 优先队列存放数据
private final PriorityQueue<E> q = new PriorityQueue<E>(); /**
* 基于Leader-Follower模式的变体,用于尽量减少不必要的线程等待
*/
private Thread leader = null; /**
* 与lock对应的条件变量
*/
private final Condition available = lock.newCondition();
}
  1. 使用ReentrantLock独占锁实现线程同步,使用Condition实现等待通知机制。
  2. 基于Leader-Follower模式的变体,减少不必要的线程等待。
  3. 内部使用PriorityQueue优先级队列存储元素,且队列中元素必须实现Delayed接口。

Delayed接口

队中的元素必须实现Delayed接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)获取元素剩余时间【剩余时间 = 到期时间 - 当前时间】。

每次向优先队列中添加元素时根据compareTo方法作为排序规则,当然我们约定一下,默认q.peek()出来的就是最先过期的元素。

public interface Delayed extends Comparable<Delayed> {
// 返回剩余时间
long getDelay(TimeUnit unit);
} public interface Comparable<T> {
// 定义比较方法
public int compareTo(T o);
}

Delayed元素案例

学习了Delayed接口之后,我们看一个实际的案例,加深印象,源于:《Java并发编程之美》。

    static class DelayedElement implements Delayed {

        private final long delayTime; // 延迟时间
private final long expire; // 到期时间
private final String taskName; // 任务名称 public DelayedElement (long delayTime, String taskName) {
this.delayTime = delayTime;
this.taskName = taskName;
expire = now() + delayTime;
} final long now () {
return System.currentTimeMillis();
} // 剩余时间 = 到期时间 - 当前时间
@Override
public long getDelay (TimeUnit unit) {
return unit.convert(expire - now(), TimeUnit.MILLISECONDS);
} @Override
public int compareTo (Delayed o) {
return (int) (getDelay(TimeUnit.MILLISECONDS) - o.getDelay(TimeUnit.MILLISECONDS));
} @Override
public String toString () {
final StringBuilder res = new StringBuilder("DelayedElement [ ");
res.append("delay = ").append(delayTime);
res.append(", expire = ").append(expire);
res.append(", taskName = '").append(taskName).append('\'');
res.append(" ] ");
return res.toString();
}
} public static void main (String[] args) {
// 创建delayQueue队列
DelayQueue<DelayedElement> delayQueue = new DelayQueue<>(); // 创建延迟任务
Random random = new Random();
for (int i = 0; i < 10; i++) {
DelayedElement element = new DelayedElement(random.nextInt(500), "task: " + i);
delayQueue.offer(element);
} // 依次取出任务并打印
DelayedElement ele = null;
try {
for (; ; ) {
while ((ele = delayQueue.take()) != null) {
System.out.println(ele);
}
}
} catch (InterruptedException ex) {
ex.printStackTrace();
}
}
// 打印结果
DelayedElement [ delay = 2, expire = 1611995426061, taskName = 'task: 4' ]
DelayedElement [ delay = 52, expire = 1611995426111, taskName = 'task: 2' ]
DelayedElement [ delay = 80, expire = 1611995426139, taskName = 'task: 5' ]
DelayedElement [ delay = 132, expire = 1611995426191, taskName = 'task: 0' ]
DelayedElement [ delay = 174, expire = 1611995426233, taskName = 'task: 9' ]
DelayedElement [ delay = 175, expire = 1611995426234, taskName = 'task: 7' ]
DelayedElement [ delay = 326, expire = 1611995426385, taskName = 'task: 3' ]
DelayedElement [ delay = 447, expire = 1611995426506, taskName = 'task: 8' ]
DelayedElement [ delay = 452, expire = 1611995426511, taskName = 'task: 1' ]
DelayedElement [ delay = 486, expire = 1611995426545, taskName = 'task: 6' ]
  • 实现了compareTo方法,定义比较规则为越早过期的排在队头。
  • 实现了getDelay方法,计算公式为:剩余时间 = 到期时间 - 当前时间。

构造器

DelayQueue构造器相比于前几个,就显得非常easy了。

    public DelayQueue() {}

    public DelayQueue(Collection<? extends E> c) {
this.addAll(c);
}

put

因为DelayQueue是无界队列,不会因为边界问题产生阻塞,因此put操作和offer操作是一样的。

    public void put(E e) {
offer(e);
} public boolean offer(E e) {
// 获取独占锁
final ReentrantLock lock = this.lock;
lock.lock();
try {
// 加入优先队列里
q.offer(e);
// 判断堆顶元素是不是刚刚插入的元素
// 如果判断为true,说明当前这个元素是将最先过期
if (q.peek() == e) {
// 重置leader线程为null
leader = null;
// 激活available变量条件队列中的一个线程
available.signal();
}
return true;
} finally {
lock.unlock();
}
}

take

take方法将会获取并移除队列里面延迟时间过期的元素 ,如果队列里面没有过期元素则陷入等待。

    public E take() throws InterruptedException {
// 获取独占锁
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
// 瞅一瞅谁最快过期
E first = q.peek();
// 队列为空,则将当前线程置入available的条件队列中,直到里面有元素
if (first == null)
available.await();
else {
// 看下还有多久过期
long delay = first.getDelay(NANOSECONDS);
// 哇,已经过期了,就移除它并返回
if (delay <= 0)
return q.poll();
first = null; // don't retain ref while waiting
// leader不为null表示其他线程也在执行take
// 则将当前线程置入available的条件队列中
if (leader != null)
available.await();
else {
// 如果leader为null,则选择当前线程作为leader线程
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
// 等待delay时间,时间到之后,会出条件队列,继续竞争锁
available.awaitNanos(delay);
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && q.peek() != null)
available.signal();
lock.unlock();
}
}

first = null 有什么用

如果不设置first = null,将会引起内存泄露。

  • 线程A到达,队首元素没有到期,设置leader = 线程A,并且执行available.awaitNanos(delay);等待元素过期。
  • 这时线程B来了,因为leader != null,则会available.await();阻塞,线程C、D、E同理。
  • 线程A阻塞完毕了,再次循环,获取列首元素成功,出列。

这个时候列首元素应该会被回收掉,但是问题是它还被线程B、线程C持有着,所以不会回收,如果线程增多,且队首元素无限期的不能回收,就会造成内存泄漏。

总结

DelayQueue是一个支持延时获取元素无界阻塞队列,使用PriorityQueue来存储元素。

队中的元素必须实现Delayed接口【Delay接口又继承了Comparable,需要实现compareTo方法】,每个元素都需要指明过期时间,通过getDelay(unit)获取元素剩余时间【剩余时间 = 到期时间 - 当前时间】,每次向优先队列中添加元素时根据compareTo方法作为排序规则。

基于Leader-Follower模式使用leader变量,减少不必要的线程等待。

DelayQueue是无界队列,因此插入操作是非阻塞的。但是take操作从队列获取元素时,是阻塞的,阻塞规则为:

  • 当一个线程调用队列的take方法,如果队列为空,则将会调用 available.await()陷入阻塞。
  • 如果队列不为空,则查看队列的队首元素是否过期,根据getDelay的返回值是否小于0判断,如果过期则返回该元素。
  • 如果队首元素未过期,则判断当前线程是否为leader线程,如果不是,表明有其他线程在执行take操作,就调用available.await()陷入阻塞。
  • 如果没有其他线程在执行take,就将当前线程设置为leader,并等待队首元素过期,available.awaitNanos(delay)
  • leader线程退出take之后,将会调用available.signal()唤醒一个follower线程,接着回到开始那步。

参考阅读

Java并发包源码学习系列:阻塞队列实现之DelayQueue源码解析的更多相关文章

  1. Java中常用的七个阻塞队列第二篇DelayQueue源码介绍

    Java中常用的七个阻塞队列第二篇DelayQueue源码介绍 通过前面两篇文章,我们对队列有了了解及已经认识了常用阻塞队列中的三个了.本篇我们继续介绍剩下的几个队列. 本文主要内容:通过源码学习De ...

  2. Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析

    目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...

  3. Java并发包源码学习系列:阻塞队列BlockingQueue及实现原理分析

    目录 本篇要点 什么是阻塞队列 阻塞队列提供的方法 阻塞队列的七种实现 TransferQueue和BlockingQueue的区别 1.ArrayBlockingQueue 2.LinkedBloc ...

  4. Java并发包源码学习系列:阻塞队列实现之ArrayBlockingQueue源码解析

    目录 ArrayBlockingQueue概述 类图结构及重要字段 构造器 出队和入队操作 入队enqueue 出队dequeue 阻塞式操作 E take() 阻塞式获取 void put(E e) ...

  5. Java并发包源码学习系列:阻塞队列实现之LinkedBlockingQueue源码解析

    目录 LinkedBlockingQueue概述 类图结构及重要字段 构造器 出队和入队操作 入队enqueue 出队dequeue 阻塞式操作 E take() 阻塞式获取 void put(E e ...

  6. Java并发包源码学习系列:阻塞队列实现之PriorityBlockingQueue源码解析

    目录 PriorityBlockingQueue概述 类图结构及重要字段 什么是二叉堆 堆的基本操作 向上调整void up(int u) 向下调整void down(int u) 构造器 扩容方法t ...

  7. Java并发包源码学习系列:阻塞队列实现之SynchronousQueue源码解析

    目录 SynchronousQueue概述 使用案例 类图结构 put与take方法 void put(E e) E take() Transfer 公平模式TransferQueue QNode t ...

  8. Java并发包源码学习系列:阻塞队列实现之LinkedTransferQueue源码解析

    目录 LinkedTransferQueue概述 TransferQueue 类图结构及重要字段 Node节点 前置:xfer方法的定义 队列操作三大类 插入元素put.add.offer 获取元素t ...

  9. Java并发包源码学习系列:阻塞队列实现之LinkedBlockingDeque源码解析

    目录 LinkedBlockingDeque概述 类图结构及重要字段 linkFirst linkLast unlinkFirst unlinkLast unlink 总结 参考阅读 系列传送门: J ...

随机推荐

  1. 01. Consul 入门

    简介 Consul 是 HashiCorp 公司推出的开源工具,用于实现分布式系统的服务发现与配置.与其他分布式服务注册与发现的方案,Consul的方案更"一站式",内置了服务注册 ...

  2. Idea mybatis maper接口与mapper.xml文件关联 会根据接口中的方法点在mxl中生成相应sql方法

  3. Selenium多浏览器测试

    在浏览器的兼容性测试中,会测试产品在不同浏览器上的兼容性,比较主流的浏览器有IE.Firefox.Chrome,Opera,Safari等.还有其它如360.QQ.遨游.百度等浏览器都是基于IE或者c ...

  4. [leetcode]48RotateImage二维数组翻转

    import java.util.Arrays; /** * You are given an n x n 2D matrix representing an image. Rotate the im ...

  5. [标签] Java学习日报7.28

    package minG;import java.util.*;public class MinG { public static void main(String[] args) { // TODO ...

  6. 错误总结Mapper扫描不到

    Unsatisfied dependency expressed through field 'baseMapper'; nested exception is org.springframework ...

  7. 使用mono-repo实现跨项目组件共享

    本文会分享一个我在实际工作中遇到的案例,从最开始的需求分析到项目搭建,以及最后落地的架构的整个过程.最终实现的效果是使用mono-repo实现了跨项目的组件共享.在本文中你可以看到: 从接到需求到深入 ...

  8. SQL Server解惑——为什么ORDER BY改变了变量的字符串拼接结果

      在SQL Server中可能有这样的拼接字符串需求,需要将查询出来的一列拼接成字符串,如下案例所示,我们需要将AddressID <=10的AddressLine1拼接起来,分隔符为|.如下 ...

  9. Java8接口的默认方法

    项目实战 实现上图接口的实现类有很多,其中有些实现类已经在生成环境了,现在需要新增几个实现类,都需要有回调方法,所以在接口中添加了一个回调的默认方法,如果使用接口的普通方法就得改所有实现了接口的实现类 ...

  10. rename 表名

    rename table 旧表名1 to 新表名1,旧表名2 to 新表名2;