【bzoj1016】[JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 4863 Solved: 1973
[Submit][Status][Discuss]
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
就是不同的最小生成树方案,每种权值的边的数量是确定的,每种权值的边的作用是确定的
排序以后先做一遍最小生成树,得出每种权值的边使用的数量x
然后对于每一种权值的边搜索,得出每一种权值的边选择方案
然后乘法原理
转自——hzwer.com
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<ctime>
using namespace std;
#define mod 31011
int n,m,len,sum,tot,ans=,f[];
struct node{int x,y,v;}e[];
struct sha{int l,r,v;}a[];
bool cmp(node a,node b) {return a.v<b.v;}
int find(int x) {return f[x]==x?x:find(f[x]);}
namespace INIT
{
char buf[<<],*fs,*ft;
inline char getc() {return (fs==ft&&(ft=(fs=buf)+fread(buf,,<<,stdin),fs==ft))?:*fs++;}
inline int read()
{
int x=,f=; char ch=getc();
while(!isdigit(ch)) {if(ch=='-') f=-; ch=getc();}
while(isdigit(ch)) {x=x*+ch-''; ch=getc();}
return x*f;
}
}using namespace INIT;
void dfs(int x,int now,int k)
{
if(now==a[x].r+)
{
if(k==a[x].v) sum++;
return;
}
int p=find(e[now].x),q=find(e[now].y);
if(p!=q)
{
f[p]=q;
dfs(x,now+,k+);
f[p]=p; f[q]=q;
}
dfs(x,now+,k);
}
int main()
{
//freopen("cin.in","r",stdin);
//freopen("cout.out","w",stdout);
n=read(); m=read();
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<=m;i++) e[i].x=read(),e[i].y=read(),e[i].v=read();
sort(e+,e+m+,cmp);
for(int i=;i<=m;i++)
{
if(e[i].v!=e[i-].v) {a[++len].l=i;a[len-].r=i-;}
int p=find(e[i].x),q=find(e[i].y);
if(p!=q) {f[p]=q; a[len].v++; tot++;}
}
a[len].r=m;
if(tot!=n-) {printf("0\n"); return ;}
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<=len;i++)
{
sum=;
dfs(i,a[i].l,);
ans=(ans*sum)%mod;
for(int j=a[i].l;j<=a[i].r;j++)
{
int p=find(e[j].x),q=find(e[j].y);
if(p!=q) f[p]=q;
}
}
printf("%d\n",ans);
return ;
}
【bzoj1016】[JSOI2008]最小生成树计数的更多相关文章
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数
题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...
- [BZOJ1016][JSOI2008]最小生成树计数(结论题)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...
- [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)
传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...
- [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...
随机推荐
- onsubmit对表单的拦截
今天遇到一个问题:在对同name 的input 表单时 判断其值是否有效 用了each判断 当初错误的做法: function check_goods() { var regs = /^\d+$/; ...
- bzoj 3195 奇怪的道路
Written with StackEdit. Description 小宇从历史书上了解到一个古老的文明.这个文明在各个方面高度发达,交通方面也不例外.考古学家已经知道,这个文明在全盛时期有\(n\ ...
- 剑指offer-第四章解决面试题思路(判断一个数组是否为二叉搜索树的后序遍历序列)
二叉搜索树:二叉搜索树根节点的左边都比根节点小,右边都比根节点大. 例题:输入一个数组,判断是否为二叉搜索树的后序遍历序列,如果是,返回true,如果不是,返回flase,假设没有重复的元素. 思路: ...
- 组件与.NET互操作
组件 1.何谓组件技术? 组件技术就是利用某种编程手段,将一些人们所关心的,但又不便于让最终用户去直接操作的细节进行了封装,同时对各种业务逻辑规则进行了实现,用于处理用户的内部操作细节,甚至于将安全机 ...
- SCARA——OpenGL入门学习四(颜色)
OpenGL入门学习[四] 本次学习的是颜色的选择.终于要走出黑白的世界了~~ OpenGL支持两种颜色模式:一种是RGBA,一种是颜色索引模式. 无论哪种颜色模式,计算机都必须为每一个像素保存一些数 ...
- Hbase 参数配置及优化
From:http://www.open-open.com/lib/view/open1346684547787.html 接触hbase已有半年的时间,查了很多资料,也参考了很多别人心得,也希望把自 ...
- TStrings的一些技巧(转)
TStrings是一个抽象类,在实际开发中,是除了基本类型外,应用得最多的.常规的用法大家都知道,现在来讨论它的一些高级的用法.先把要讨论的几个属性列出来:1.CommaText2.Delimiter ...
- sqlbulkcopy 使用DataTable作为数据源的数据类型问题--来自数据源的String类型的给定值不能转换为指定目标列的类型 uniqueidentifier
今天做批量插入的时候,SQLSERVER总是报错,错误提示“来自数据源的String类型的给定值不能转换为指定目标列的类型 uniqueidentifier”. 首先核对了一下定义的dataTable ...
- vs2005中microsoft ado data control 6.0控件问题
在vs2005中是没有这个控件的,需要注册,步骤如下: 1. 先到C:\WINDOWS\system32目录下看看你的系统里是否已经有了MSADODC.ocx和MSDATGRD.ocx这两个文件(多半 ...
- 让Eclipse的TomcatPlugin支持Tomcat 8.x
使用tomcat插件启动项目的优势: 1.TomcatPlugin是一个免重启的开发插件,原始的Servers方式启动tomcat项目,修改xxx.ftl 或者 xxx.jsp 文件后需要重启to ...