题目:

FJ给他的奶牛用二进制进行编号,每个编号恰好包含K 个"1" (1 <= K <= 10),且必须是1开头。FJ按升序编号,第一个编号是由K个"1"组成。

请问第N(1 <= N <= 10^7)个编号是什么。

不同寻常的暴力:

样例是升序的第7个,我把1--7都列出来。

1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

发现的规律是,每次将二进制串的从右往左数的第1个前面为0的1往左移一位。

这个1右边的1全部靠后。  其实想想也很容易可以想出答案:既然我要移动1的位置了,那肯定是高位拉 , 那我后面的1就是反正最后咯,这样才可以是理论上的最小;

a[i]表示的是第i个1的位置,初始值为(按阳历来说)第一个1的位置是1,第二个

1的位置是2,第三个1的位置是3.二进制也就是1 1 1 。

能移动的条件是,当前1的位置+1不等于

下一个1的位置,也就是前面是空的。然后就这样啊....

#include<cstdio>
using namespace std;
int n,k,j;
int a[];
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=k;i++)a[i]=i;
for(int i=;i<=n;i++){
j=;
while(){
a[j]++;
if(a[j]!=a[j+])break;
a[j]=j;
j++;
}
}
j=k;
for(int i=a[k];i>=;i--){
if(a[j]==i)printf(""),j--;
else printf("");
}
return ;
}

组合数学法:(摘取一片博客 , 我还不是很qq理解)

一个只有0和1的数字串,只有1对数字串大小有影响,0没有影响,大小取决于1的位置和数量。

因为题目中要求出第n个编号是什么,并且这道题有一个限制:第一位必须是0,那么我们先将这个串用足够大小保存,足够大的话我们可以添加前导0,到最后从第一个非0位输出即可,也就是说我们要找到一个m,使得C(m,k) >= n,可以二分求m。

当k=1直接特判掉。

从大到小确定每一位。

如果做到第i位,之前已经填了j个1,那么这一位填0的方案数就是C(i-1,k-j),即还剩i-1位可以填k-j个1的方案数。

如果这个数小于n,那么这一位填1,并且n要减去这个数,否则这一位填0。

不过这个组合数会非常大,还会爆long long,需要分类讨论进行二分求m.一定要注意这点,第一次提交就在这里wa的QwQ

时间复杂度O(sqrt(n)k)

#include<cstdio>
#include<iostream>
using namespace std;
const int maxn = ;
long long n , k , m;
long long num[maxn] , cnt;
long long mid , l , r;
long long zuhe(int x , int y)
{
long long k = ;
for(int i = x;i > x - y;i --)
{
k *= i;
}
for(int i = y;i > ;i --)
{
k /= i;
}
return k;
}
int main(){
scanf("%lld%lld" , &n , &k);
if(k == )
{
for(int i = n;i > ;i --)
{
if(i == n)
{
printf("");
}
else printf("");
}
puts("");
return ;
}
else {
//分类讨论二分求m
if(k == )
{
l = ;
r = ;
while(l <= r)
{
mid = (l + r) / ;
if(zuhe(mid , k) >= n)
{
m = mid;
r = mid - ;
}
else {
l = mid + ;
}
}
}
else {
if(k >= )
{
l = ;
r = ;
while(l <= r)
{
mid = (l + r) / ;
if(zuhe(mid , k) >= n)
{
m = mid;
r = mid - ;
}
else {
l = mid + ;
}
}
}
else {
l = ;
r = ;
while(l <= r)
{
mid = (l + r) / ;
if(zuhe(mid , k) >= n)
{
m = mid;
r = mid - ;
}
else {
l = mid + ;
}
}
}
}
for(int i = m;i > ;i --)
{
long long t = zuhe(i - , k);
if(t < n)
{
num[i] = ;
n -= t;
k --;
if(!cnt)
{
cnt = i;
}
}
if(!k || !n)
{
break;
}
}
for(long long i = cnt;i > ;i --)
{
printf("%d" , num[i]);
}
}
puts("");
return ;
}

动态规划:

太菜了没有想到组合数

我们也医用数位dp去做;

f[i][j] 表示在前i位我们放j个1的情况有几种

f[i][j]=f[i-1][j]+f[i-1][j];

然后我们直接大力的从字符串的高位开始枚举

如果这个位子不放我们后来所有的方法都不够了那就放

#include<bits/stdc++.h>
#define Ll long long
using namespace std;
const Ll N=,M=1e5+;
Ll a[M],f[M][N];
Ll n,m,ok,v;
int main()
{
scanf("%lld%lld",&m,&n);
if(n==){
cout<<;
for(int i=;i<m;i++)printf("");
return ;
}
for(Ll i=;i<=1e5;i++)f[i][]=;
for(Ll i=;i<=1e5;i++)if(!v)
for(Ll j=;j<=n;j++){
f[i][j]=f[i-][j]+f[i-][j-];
if(j==n&&f[i][j]>=m){v=i;break;}
}
for(Ll i=v;i;i--){
if(f[i-][n]<m)
a[i]=,m-=f[i-][n],n--;
if(a[i])ok=;
if(ok)cout<<a[i];
}
}

组合数字最快然后超神暴力然后动态规划

[USACO12FEB]牛的IDCow IDs 一题多解(求二进制中有k个1 ,第n大的数)的更多相关文章

  1. 洛谷P3048 [USACO12FEB]牛的IDCow IDs

    P3048 [USACO12FEB]牛的IDCow IDs 12通过 67提交 题目提供者lin_toto 标签USACO2012 难度普及/提高- 时空限制1s / 128MB 提交  讨论  题解 ...

  2. [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  3. 洛谷 P3048 [USACO12FEB]牛的IDCow IDs

    题目描述 Being a secret computer geek, Farmer John labels all of his cows with binary numbers. However, ...

  4. LUOGU P3048 [USACO12FEB]牛的IDCow IDs(组合数)

    传送门 解题思路 组合数学.首先肯定是要先枚举位数,假如枚举到第\(i\)位.我们可以把第一位固定,然后那么后面的随意放\(1\),个数就为\(C_{i-1}^{k-1}\).然后每次枚举时如果方案\ ...

  5. P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 贪心题.先选中 \(c_i\) 最小的 \(k\) 头牛,如果这样就超过 \(m\) ,直接退出,输出答案.否则考虑把后面的牛依次加入, ...

  6. 洛谷P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...

  7. 牛客网 Java 工程师能力评估 20 题 - 详解

    牛客网 Java 工程师能力评估 20 题 - 详解 不知在看博客的你是否知道 牛客网,不知道就太落后了,分享给你 : 牛客网 此 20 题,绝对不只是 20 题! 免责声明:本博客为学习笔记,如有侵 ...

  8. 牛客网Java刷题知识点之为什么HashMap和HashSet区别

    不多说,直接上干货! HashMap  和  HashSet的区别是Java面试中最常被问到的问题.如果没有涉及到Collection框架以及多线程的面试,可以说是不完整.而Collection框架的 ...

  9. 牛客网Java刷题知识点之为什么HashMap不支持线程的同步,不是线程安全的?如何实现HashMap的同步?

    不多说,直接上干货! 这篇我是从整体出发去写的. 牛客网Java刷题知识点之Java 集合框架的构成.集合框架中的迭代器Iterator.集合框架中的集合接口Collection(List和Set). ...

随机推荐

  1. 代理模式 静态代理、JDK动态代理、Cglib动态代理

    1 代理模式 使用代理模式时必须让代理类和被代理类实现相同的接口: 客户端通过代理类对象来调用被代理对象方法时,代理类对象会将所有方法的调用分派到被代理对象上进行反射执行: 在分派的过程中还可以添加前 ...

  2. CF835F Roads in the Kingdom

    话说这是去年大爷的一道NOIP模拟赛题,对着大爷的代码看了一堂课的我终于把这题写掉了. 本题要求在基环树给定的环上删去一条边使剩下的树的直径最小,输出这个最小直径. 那么基环树可以画成这样子的: 有一 ...

  3. 1.介绍templates

    我们现在要计算int和double类型数据的平方,我们就需要2个函数: #include <iostream> using namespace std; int square(int x) ...

  4. 利用Thread.stop完成方法执行超时中断

    示例代码可以从github上获取 https://github.com/git-simm/simm-framework.git 接上篇博客<FutureTask子线程取消执行的状态判断> ...

  5. Detailed ASP.NET MVC Pipeline

    Posted By : Shailendra Chauhan, 27 Jan 2014 P.NET MVC is an open source framework built on the top o ...

  6. 【[APIO/CTSC2007]动物园】状压DP

    题目测评:https://www.luogu.org/problemnew/show/P3622 题目描述 新建的圆形动物园是亚太地区的骄傲.圆形动物园坐落于太平洋的一个小岛上,包含一大圈围栏,每个围 ...

  7. Docker 的部署方式

    在使用 docker run 命令启动 Docker 容器时,如果需要进行端口映射.目录挂载.网络信息等配置,整条命令将变得非常长,并且由于是一条 shell 命令,修改和复用也不方便.我们在大规模部 ...

  8. 【连载】redis库存操作,分布式锁的四种实现方式[一]--基于zookeeper实现分布式锁

    一.背景 在电商系统中,库存的概念一定是有的,例如配一些商品的库存,做商品秒杀活动等,而由于库存操作频繁且要求原子性操作,所以绝大多数电商系统都用Redis来实现库存的加减,最近公司项目做架构升级,以 ...

  9. 将某个类封装成XML形式返回

    <?xml version="1.0" encoding="GBK" standalone="no"?><package& ...

  10. SQL数据库查询语言(1)

    目录 MySQL数据库 MySQL安装与配置 DDL数据定义语言 创建数据库 查看.删除数据库 修改.备份.恢复数据库 创建表 修改表 MySQL常用数据类型 DML数据操纵语言 Insert语句 m ...