package com.test.tree;

public class BinarySearchTree<T extends Comparable<? super T>> {
/*定义二叉树的节点*/
private class BinaryNode<T>{
public T data;
public BinaryNode<T> lt;
public BinaryNode<T> rt; public BinaryNode(T data) {
this(data, null, null);
}
public BinaryNode(T data, BinaryNode<T> lt, BinaryNode<T> rt) {
this.data = data;
this.lt = lt;
this.rt = rt;
}
} private BinaryNode<T> root; //定义二叉查找树的根节点 public BinarySearchTree(){ //初始化二叉查找树
root = null;
} public void makeEmpty(){ //树清空
root = null;
} public boolean isEmpty(){ //树判空
return root == null;
} public boolean contains(T x){ //判断是否包含某个值
return contains(root, x);
}
public boolean contains(BinaryNode<T> root, T x){
if(root == null){
return false;
}
int compare = x.compareTo(root.data);
if(compare == 0){
return true;
}else if(compare < 0){
contains(root.lt, x);
}else {
contains(root.rt, x);
}
return false;
} public T findMin(){ //获得树中最小值
if(!isEmpty()){
return findMin(root).data;
}
return null;
}
public T findMax(){ //获得树中最大值
if(!isEmpty()){
return findMax(root).data;
}
return null;
} public void insert(T data){ //插入数据
root = insert(data, root);
} public void remove(T data){
root = remove(data, root);
} public void printTree(){
if(root == null){
System.out.println("empty tree");
}else{
printTree(root);
}
}
/*中序遍历*/
public void printTree(BinaryNode<T> t){
if(t != null){
printTree(t.lt);
System.out.print(t.data+"、");
printTree(t.rt);
}
}
/**
* 删除查找树的某个节点,首先用要删除节点的右子树中最小值替换节点值,
* 再从右子树中删除此节点,递归调用
* */
public BinaryNode<T> remove(T data, BinaryNode<T> t){
if(t == null){
return t;
}
int compare = data.compareTo(t.data); if(compare < 0){
//插入值比根节点的值小,插入到左字数
t.lt = remove(data, t.lt);
}else if(compare > 0){
//插入值比根节点的值小,插入到左字数
t.rt = remove(data, t.rt);
}else if(t.lt != null && t.rt != null){
t.data = findMin(t.rt).data; //将右子树中的最小值赋给要删除的节点
t.rt = remove(t.data, t.rt);
}else{
t = t.lt == null? t.rt:t.lt;
}
return t;
}
public BinaryNode<T> insert(T data, BinaryNode<T> t){
if(t == null){
return new BinaryNode<T>(data, null, null);
}
int compare = data.compareTo(t.data);
if(compare < 0){
//插入值比根节点的值小,插入到左字数
t.lt = insert(data, t.lt);
}else if(compare > 0){
//插入值比根节点的值小,插入到左字数
t.rt = insert(data, t.rt);
}else{
}
return t;
}
public BinaryNode<T> findMin(BinaryNode<T> t){
if(t == null){
return t;
}else if(t.lt == null){ //查找树的左边比节点值小,找到最左边的节点即可
return t;
}else{
return findMin(t.lt);
}
} public BinaryNode<T> findMax(BinaryNode<T> t){
if(t == null){
return null;
}else if(t.rt == null){ //查找树的右边比节点值大,找到最右边的节点即可
return t;
}
return findMax(t.rt);
} public static void main(String[] args) {
BinarySearchTree<Integer> binarySearchTree = new BinarySearchTree<Integer>();
binarySearchTree.insert(8);
binarySearchTree.insert(4);
binarySearchTree.insert(6);
binarySearchTree.insert(3);
binarySearchTree.insert(14);
binarySearchTree.insert(10);
System.out.println("最小值: "+binarySearchTree.findMin());
System.out.println("最大值: "+binarySearchTree.findMax());
binarySearchTree.printTree();
binarySearchTree.remove(8);
System.out.println();
binarySearchTree.printTree();
}
}

二叉查找树--java的更多相关文章

  1. 数据结构实现(四)二叉查找树java实现

    转载 http://www.cnblogs.com/CherishFX/p/4625382.html 二叉查找树的定义: 二叉查找树或者是一颗空树,或者是一颗具有以下特性的非空二叉树: 1. 若左子树 ...

  2. 递归的二叉查找树Java实现

    package practice; public class TestMain { public static void main(String[] args) { int[] ao = {50,18 ...

  3. 二叉查找树 Java实现

    定义: 一棵二叉查找树是一棵二叉树,每个节点都含有一个Comparable的键(以及对应的值). 每个节点的键都大于左子树中任意节点的键而小于右子树中任意节点的键. 树的术语: Name Functi ...

  4. LeetCode96_Unique Binary Search Trees(求1到n这些节点能够组成多少种不同的二叉查找树) Java题解

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

  5. Spark案例分析

    一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...

  6. 数据结构笔记--二叉查找树概述以及java代码实现

    一些概念: 二叉查找树的重要性质:对于树中的每一个节点X,它的左子树任一节点的值均小于X,右子树上任意节点的值均大于X. 二叉查找树是java的TreeSet和TreeMap类实现的基础. 由于树的递 ...

  7. Java for LintCode 验证二叉查找树

    给定一个二叉树,判断它是否是合法的二叉查找树(BST) 一棵BST定义为: 节点的左子树中的值要严格小于该节点的值.    节点的右子树中的值要严格大于该节点的值.    左右子树也必须是二叉查找树. ...

  8. 二叉查找树的Java实现

    为了克服对树结构编程的恐惧感,决心自己实现一遍二叉查找树,以便掌握关于树结构编程的一些技巧和方法.以下是基本思路: [1] 关于容器与封装.封装,是一种非常重要的系统设计思想:无论是面向过程的函数,还 ...

  9. 二叉查找树(三)之 Java的实现

    概要 在前面分别介绍了"二叉查找树的相关理论知识,然后给出了二叉查找树的C和C++实现版本".这一章写一写二叉查找树的Java实现版本. 目录 1. 二叉树查找树2. 二叉查找树的 ...

随机推荐

  1. python并发编程&多进程(二)

    前导理论知识见:python并发编程&多进程(一) 一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_cou ...

  2. Python学习笔记2_Python基础

    一.变量(给数据起个名字) 变量是计算机内存中的一块区域,变量可以存储规定范围内的值,而且值可以改变. 1.变量的命名方法 -变量名有字母.数字.下划线组成 -不能以数字开头 -不可以使用关键字 -a ...

  3. Python基础(6)_函数

    一 为何要有函数? 不加区分地将所有功能的代码垒到一起,问题是: 代码可读性差 代码冗余 代码可扩展差 如何解决? 函数即工具,事先准备工具的过程是定义函数,拿来就用指的就是函数调用 结论:函数使用必 ...

  4. Android Http Get Post

    public class MyHttpUrlCon { public static String settionId = ""; ;// public ReturnData doG ...

  5. UI控件之UITableView的基本属性

    UITableView:特殊的滚动视图,横向固定,可以在纵向上滚动,自动计算contentSize 创建tableView,初始化时指定样式,默认是plain UITableView *_tableV ...

  6. UI控件之UINavigationController

    ViewController1 *vc1=[[ViewController1 alloc]init]; UINavigationController *nav1=[[UINavigationContr ...

  7. 010_Hadoop配置测试成功后关机重启浏览器打不开dfs和MP

    针对Hadoop成功配置并测试通过,第二次(关机重启)后Hadoop打不开的问题,一般都是因为防火墙的问题,将防火墙关闭后就可以了. 更细致的现象为start-all.sh启动,五大守护进程启动成功, ...

  8. VSCode eslint校验 tab改为2个空格

    修改:.eslintrc.json

  9. [SCOI2003]蜘蛛难题

    题目 对于当年来说似乎是神题?? 做法 对于联通注水来说,我们考虑把所有能平分到水的桶同时加高度,然后暴力判断 My complete code copy来的代码 #include <cstdi ...

  10. jQuery消息提示框插件Tipso

    在线演示 本地下载