线段树+差分【p1438】无聊的数列
Description
维护一个数列{a[i]},支持两种操作:
1、1 L R K D:给出一个长度等于R-L+1的等差数列,首项为K,公差为D,并将它对应加到a[L]~a[R]的每一个数上。即:令a[L]=a[L]+K,a[L+1]=a[L+1]+K+D,
a[L+2]=a[L+2]+K+2D……a[R]=a[R]+K+(R-L)D。
2、2 P:询问序列的第P个数的值a[P]。
Input
第一行两个整数数n,m,表示数列长度和操作个数。
第二行n个整数,第i个数表示a[i](i=1,2,3…,n)。
接下来的m行,表示m个操作,有两种形式:
1 L R K D
2 P 字母意义见描述(L≤R)。
Output
对于每个询问,输出答案,每个答案占一行。
很明显,这个题需要数据结构来维护。
维护区间,显然我们会想到线段树(貌似写树状数组更简单一些.)
维护一个等差数列会比较麻烦.
但是我们考虑一下等差数列的性质
\]
此时可以发现,我们维护一下前缀和不就好了.!
但是还可能影响到后面的状态,因此我们在最后减去这些项的和即可.
注意要在一个修改操作的起始位置赋值成\(k\)(首项),然后后面的每一项加上\(d\)即可.
最后如果右端点不为\(n\),我们需要减去前面等差数列的最后一项.
代码
#include<cstdio>
#include<cctype>
#define ls o<<1
#define rs o<<1|1
#define N 100008
#define R register
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m;
int a[N],tr[N<<2],tg[N<<2];
inline void up(int o)
{
tr[o]=tr[ls]+tr[rs];
}
inline void down(int o,int l,int r)
{
if(tg[o])
{
tg[ls]+=tg[o];tg[rs]+=tg[o];
int mid=(l+r)>>1;
tr[ls]+=(mid-l+1)*tg[o];
tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tr[o]+=(r-l+1)*z;
tg[o]+=z;
return;
}
int mid=(l+r)>>1;
down(o,l,r);
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid)change(rs,mid+1,r,x,y,z);
up(o);
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int res=0,mid=(l+r)>>1;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
int main()
{
in(n);in(m);
for(R int i=1;i<=n;i++)in(a[i]);
for(R int opt,x,y,k,d;m;m--)
{
in(opt);
if(opt==1)
{
in(x),in(y),in(k),in(d);
change(1,1,n,x,x,k);
if(y>x)change(1,1,n,x+1,y,d);
if(y!=n)change(1,1,n,y+1,y+1,-(k+(y-x)*d));
}
else
{
in(x);
printf("%d\n",a[x]+query(1,1,n,1,x));
}
}
}
线段树+差分【p1438】无聊的数列的更多相关文章
- P1438 无聊的数列 (差分+线段树)
题目 P1438 无聊的数列 解析: 先考虑修改,用差分的基本思想,左端点加上首项\(k\),修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),最后的\(r+1\)再减去\(k+(r- ...
- [luogu P1438] 无聊的数列
[luogu P1438] 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个 ...
- Luogu P1438无聊的数列
洛谷 P1438无聊的数列 题目链接 点这里! 题目描述 维护一个数列\(a_i\),支持两种操作: 给出一个长度等于 \(r-l+1\)的等差数列,首项为\(k\) 公差为\(d\) 并将它对应加到 ...
- D - 小Z的加油店 线段树+差分+GCD
D - 小Z的加油店 HYSBZ - 5028 这个题目是一个线段树+差分+GCD 推荐一个差分的博客:https://www.cnblogs.com/cjoierljl/p/8728110.ht ...
- P1438 无聊的数列
P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...
- [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)
[Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...
- LUOGU P1438 无聊的数列 (差分+线段树)
传送门 解题思路 区间加等差数列+单点询问,用差分+线段树解决,线段树里维护的就是差分数组,区间加等差数列相当于在差分序列中l位置处+首项的值,r+1位置处-末项的值,中间加公差的值,然后单点询问就相 ...
- 洛谷P1438 无聊的数列 (线段树+差分)
变了个花样,在l~r区间加上一个等差数列,等差数列的显著特点就是公差d,我们容易想到用线段树维护差分数组,在l位置加上k,在l+1~r位置加上d,最后在r+1位置减去k+(l-r)*d,这样就是在差分 ...
- 洛谷P1438 无聊的数列 [zkw线段树]
题目传送门 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]} ...
随机推荐
- JS格式化 /Date(xxxxxx)/的日期类型
//用来转换/Date(xxxxxx)/类型的JSON日期为要求的日期格式字符串String.prototype._formatJsonDate = function (format) { var s ...
- display:inline-block带来的问题及解决办法
在日常工作中,会经常遇到两个或多个元素并排排列的效果,以前会使用float等实现,float虽然方便好用,但是需要清除浮动,有时会带来意想不到的bug 而且在移动端是不推荐使用float的,所以使用d ...
- BZOJ1009: [HNOI2008]GT考试 矩阵快速幂+kmp+dp
这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前 ...
- 自定义CheckBox
自定义android的CheckBox按钮图形有两个步骤三种方式: 第一步: 新建Android XML文件,类型选Drawable,根结点选selector,放置在drawable文件夹内,指定各种 ...
- 使用babel把es6代码转成es5代码
第一步:创建一个web项目 使用命令:npm init 这个命令的目的是生成package.json. 执行第二步中的命令后生成的package.json的文件的内容是: { "name&q ...
- idea使用(一)
基本上正式开发的常用工具基本都集成了,而且基本都在你非常容易触到的位置.说说我比较常用的: 1.ant 你懂的 2.maven你也懂的 3.SVN相比之下,IDEA的SVN的提交提供了更多的选项和功能 ...
- 51nodeE 斜率最大
题目传送门 这道题只要证明最佳解一定在相邻两个点之间的好啦 这个自己证一证就okay啦 而且我发现n方的算法可以过耶... #include<cstdio> #include<cst ...
- 25个常规方法优化你的jquery代码
原文发布时间为:2011-06-06 -- 来源于本人的百度文章 [由搬家工具导入] http://www.tvidesign.co.uk/blog/improve-your-jquery-25-ex ...
- 【Mysql优化】索引优化策略
1:索引类型 1.1 B-tree索引 注: 名叫btree索引,大的方面看,都用的平衡树,但具体的实现上, 各引擎稍有不同, 比如,严格的说,NDB引擎,使用的是T-tree Myisam,in ...
- SpringMvc基础知识(一)
目录: springmvc框架原理(掌握) 前端控制器.处理器映射器.处理器适配器.视图解析器 springmvc入门程序 目的:对前端控制器.处理器映射器.处理器适配器.视图解析器学习 非注解的处理 ...