洛谷——P1405 苦恼的小明
P1405 苦恼的小明
题目描述
黄小明和他的合伙人想要创办一所英语培训机构,注册的时候要填一张个人情况的表格,在身高一栏小明犯了愁。
身高要求精确到厘米,但小明实在太高了,无法在纸上填下这么长的数字。小明花钱买通了办事人员,于是只要写上他的身高模10007的结果就行了。
可小明不会取模,想起前几天请你帮他解决了水库的问题,于是又来找你帮忙。
输入输出格式
输入格式:
输入:(hehe.in)
小明的身高用A1^A2^...^An表示,第一行输入n,第二行输入n个正整数表示A1至An。
输出格式:
输出:(hehe.out)
一个数字表示小明身高mod 10007的值。
数据范围:
所有的0<=Ai<10000
第1~6数据点满足n=2
第7~10数据点满足n=3
第11个数据点满足n=1234567
(前六个数据会逐渐变大,照顾一下取模没弄清楚的同学。另外没有必要尝试对a1进行0或1的判断来骗分,估计是骗不到的。当然了,如果自认为运气好的人可以试试看,我
输入输出样例
说明
数据范围:
所有的0<=Ai<10000
第1~6数据点满足n=2
第7~10数据点满足n=3
第11个数据点满足n=1234567
(前六个数据会逐渐变大,照顾一下取模没弄清楚的同学。另外没有必要尝试对a1进行0或1的判断来骗分,估计是骗不到的。当然了,如果自认为运气好的人可以试试看,我也阻止不了你。)
(a^b)mod m=(a^(b%phi(m)))mod m
54分
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define N 1300000 #define mod 10007 using namespace std; int n,m,a[N],ans; int read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } int phi(int x) { int sum=x; ==) { ==) x/=; sum/=; } ;i*i<=x;i++) ) { ) x/=i; sum=sum/i*(i-); } ); return sum; } int qpow(int a,int b,int p) { ; while(b) { ) res=1ll*res*a%p; a=1ll*a*a%p,b>>=; }return res; } int main() { n=read();m=phi(mod); ;i<=n;i++) a[i]=read();ans=a[]; ;i<=n;i++) ans=qpow(ans,a[i]% ,mod); printf("%d",ans); ; }
54分
#include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<iostream> using namespace std; ; ; ]; int phi[NN],vis[NN],prime[NN]; int ans,tot,n; int gphi(){//这是个欧拉函数 phi[]=; ;i<=NN;i++){ if(!vis[i]){ prime[++tot]=i; phi[i]=i-; } ;j<=tot;j++){ if(i*prime[j]>NN)break; vis[i*prime[j]]=; ){ phi[i*prime[j]]=phi[i]*prime[j]; } else{ phi[i*prime[j]]=phi[i]*(prime[j]-); } } } } int qpow(int a,int k,int p){//quick pow 水 ); ,p)%p; t=(t*t)%p; )t=(t*a)%p; return t; } int modex(int k,int x){//a^b mod m=a^(b mod phi(m)) mod m if(x==n)return a[x]%k; ); int tt=qpow(a[x],kt,k); //cout<<a[x]<<' '<<kt<<' '<<k<<' '<<tt<<endl; return tt; } int main(){ gphi(); scanf("%d",&n); ;i<=n;i++)scanf("%d",&a[i]); ans=modex(pp,); printf("%d",ans);//好神奇竟然过了 ; }
洛谷——P1405 苦恼的小明的更多相关文章
- 洛谷 P1405 苦恼的小明
P1405 苦恼的小明 题目描述 黄小明和他的合伙人想要创办一所英语培训机构,注册的时候要填一张个人情况的表格,在身高一栏小明犯了愁. 身高要求精确到厘米,但小明实在太高了,无法在纸上填下这么长的数字 ...
- luogu P1405 苦恼的小明(欧拉定理)
题意 求a1^a2^a3^...^an(mod10007)n<=1000000,a[i]<=10000 题解 明眼人一眼就可以看出是欧拉定理的推论. 首先这个题是错的,没说保证互质. 然而 ...
- 洛谷 P3951 NOIP 2017 小凯的疑惑
洛谷 P3951 NOIP 2017 小凯的疑惑 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付 ...
- 【洛谷2304_LOJ2134】[NOI2015]小园丁与老司机(动态规划_网络流)
题目: 洛谷 2304 LOJ 2134 (LOJ 上每个测试点有部分分) 写了快一天 -- 好菜啊 分析: 毒瘤二合一题 -- 注意本题(及本文)使用 \(x\) 向右,\(y\) 向上的「数学坐标 ...
- 洛谷 P2709 BZOJ 3781 小B的询问
题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求$\sum_1^Kc_i^2$的值,其中$c_i$表示数字i在[L..R]中的重复次数.小B请 ...
- 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...
- [洛谷P3697]开心派对小火车
题目:洛谷P3697 题目大意是有各站停列车(慢车,相邻2站时间A)和特急列车(相邻2站时间B),特急列车在特定站点停靠. 现在加一种快速列车(相邻2站时间C,A>C>B),停靠K站(包括 ...
- 【洛谷P4251】[SCOI2015]小凸玩矩阵(二分+二分图匹配)
洛谷 题意: 给出一个\(n*m\)的矩阵\(A\).现要从中选出\(n\)个数,任意两个数不能在同一行或者同一列. 现在问选出的\(n\)个数中第\(k\)大的数的最小值是多少. 思路: 显然二分一 ...
- [洛谷201704R1]开心派对小火车
OJ题号:洛谷P3697 思路: 贪心.首先从起点出发,开特急电车,对于每一个特急车站$s_{i}$,分别下一次车,计算从当前车站$s_{i}$出发坐各停电车在指定时限内$t$最远能够到达的车站$r_ ...
随机推荐
- HDU 6201 transaction transaction transaction(拆点最长路)
transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 132768/1 ...
- 深入了解一下Redis的内存模型!
一.前言 Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站高并发不可或缺的一部分. 我们使用Redis时,会接触Redis的5种对象类型(字 ...
- 洛谷 P2501 [HAOI2006]数字序列 解题报告
P2501 [HAOI2006]数字序列 题目描述 现在我们有一个长度为n的整数序列A.但是它太不好看了,于是我们希望把它变成一个单调严格上升的序列.但是不希望改变过多的数,也不希望改变的幅度太大. ...
- HttpClientUntils工具类的使用测试及注意事项(包括我改进的工具类和Controller端的注意事项【附 Json 工具类】)
HttpClient工具类(我改过): package com.taotao.httpclient; import java.io.IOException; import java.net.URI; ...
- HDU4185:Oil Skimming(二分图最大匹配)
Oil Skimming Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- 安卓topbar编码实战
1.先在res->value下新建attrs.xml文件 <?xml version="1.0" encoding="utf-8"?> < ...
- hdu 3473 (划分树)2
Minimum Sum Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- spring4.3注解
Spring4.3中引进了 {@GetMapping.@PostMapping.@PutMapping.@DeleteMapping.@PatchMapping},分别对应这个查询,插入,更新,删除 ...
- Eclipse Tomcat部署项目没有加载新加的静态资源文件
额,一直用MyEclipse,后来用Eclipse时,启动项目后去Tomcat webapps找对应文件夹,发现没有,才知道Eclipse 默认不往本地Tomcat部署. 1.eclipse不像MyE ...
- 【BZOJ3450】Easy [期望DP]
Easy Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...