好题,回路的问题一般都要转化为度数来做
若原图的基图不连通,或者存在某个点的入度或出度为0则无解。
统计所有点的入度出度之差di
对于di>0的点,加边(s,i,di,0);
对于di<0的点,加边(i,t,-di,0);
对原图中的每条边(i,j),在网络中加边(i,j,inf,边权),
最小费用流的解加上原图所有边权和即为答案。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std;
struct way{int po,next,flow,cost;} e[];
const int inf=;
int pre[],p[],cur[],d[],fa[],cd[],rd[],q[];
bool v[];
int n,m,len,t; int getf(int x)
{
if (fa[x]!=x) fa[x]=getf(fa[x]);
return fa[x];
} bool check()
{
for (int i=; i<=n; i++)
if (!rd[i]||!cd[i]||getf(i)!=getf()) return ;
return ;
} void add(int x,int y,int f,int c)
{
e[++len].po=y;
e[len].flow=f;
e[len].cost=c;
e[len].next=p[x];
p[x]=len;
} void build(int x,int y, int f, int c)
{
add(x,y,f,c);
add(y,x,,-c);
} bool spfa()
{
int f=,r=;
for (int i=; i<=t; i++) d[i]=inf;
memset(v,false,sizeof(v));
d[]=; q[]=;
while (f<=r)
{
int x=q[f++];
v[x]=;
for (int i=p[x]; i!=-; i=e[i].next)
{
int y=e[i].po;
if (e[i].flow&&d[x]+e[i].cost<d[y])
{
d[y]=d[x]+e[i].cost;
pre[y]=x; cur[y]=i;
if (!v[y])
{
q[++r]=y;
v[y]=;
}
}
}
}
return d[n]<inf;
} int mincost()
{
int j,s=;
while (spfa())
{
int neck=inf;
for (int i=t; i; i=pre[i])
{
j=cur[i];
neck=min(neck,e[j].flow);
}
s+=d[t]*neck;
for (int i=t; i; i=pre[i])
{
j=cur[i];
e[j].flow-=neck;
e[j^].flow+=neck;
}
}
return s;
} int main()
{
int cas;
scanf("%d",&cas);
while (cas--)
{
scanf("%d%d",&n,&m);
memset(p,,sizeof(p)); len=-;
memset(rd,,sizeof(rd));
memset(cd,,sizeof(cd));
for (int i=; i<=n; i++) fa[i]=i;
int ans=;
for (int i=; i<=m; i++)
{
int x,y,u,v,z;
scanf("%d%d%d",&x,&y,&z);
cd[++x]++;rd[++y]++;
build(x,y,inf,z);
u=getf(x),v=getf(y);
if (u!=v) fa[u]=v;
ans+=z;
}
if (!check())
{
puts("-1");
continue;
}
t=n+;
for (int i=; i<=n; i++)
if (rd[i]>cd[i]) build(,i,rd[i]-cd[i],);
else build(i,t,cd[i]-rd[i],);
ans+=mincost();
printf("%d\n",ans);
}
}

hit2739的更多相关文章

  1. HIT2739 The Chinese Postman Problem(最小费用最大流)

    题目大概说给一张有向图,要从0点出发返回0点且每条边至少都要走过一次,求走的最短路程. 经典的CPP问题,解法就是加边构造出欧拉回路,一个有向图存在欧拉回路的充分必要条件是基图连通且所有点入度等于出度 ...

随机推荐

  1. java课堂第7次笔记

  2. regex & form validation & phone

    regex & form validation https://regexper.com/ https://gitlab.com/javallone/regexper-static https ...

  3. MFC 相关类、函数

    timeSetEvent()函数 CRectTracker类的使用 SetLocalTime设置本地时间 AdjustTokenPrivileges启用权限

  4. Angular Cookie 读写

    var app = angular.module('Mywind',['ui.router']) app.controller('Myautumn',function($scope,$http,$fi ...

  5. JSONP以及Spring对象MappingJacksonValue的使用方式

    什么是JSONP?,以及Spring对象MappingJacksonValue的使用方式 原文: https://blog.csdn.net/weixin_38111957/article/detai ...

  6. python3创建目录

    感觉python3最好用的创建目录函数是os.makedirs,它可以设置在多级目录不存在时自动创建,已经存在也不抛出异常. import os os.makedirs('hello/hello1/h ...

  7. HDU4280:Island Transport(最大流)

    Island Transport Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  8. HDU 1698 Just a Hook(线段树

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. C# windows application Hello World

    创建一个Windows application项目,然后可以调用里面的工具来生成代码. using System; using System.Collections.Generic; using Sy ...

  10. 51Nod 1256 求乘法逆元--扩展欧几里德

    #include<stdio.h> int exgcd(int a,int b,int &x,int &y) { ) { x=; y=; return a; } int r ...