任意门:https://vjudge.net/problem/CodeForces-822D

D. My pretty girl Noora

time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlopolis University". Let's describe the process of choosing the most beautiful girl in the university in more detail.

The contest is held in several stages. Suppose that exactly n girls participate in the competition initially. All the participants are divided into equal groups, x participants in each group. Furthermore the number x is chosen arbitrarily, i. e. on every stage number x can be different. Within each group the jury of the contest compares beauty of the girls in the format "each with each". In this way, if group consists of x girls, then  comparisons occur. Then, from each group, the most beautiful participant is selected. Selected girls enter the next stage of the competition. Thus if n girls were divided into groups, x participants in each group, then exactly  participants will enter the next stage. The contest continues until there is exactly one girl left who will be "Miss Pavlopolis University"

But for the jury this contest is a very tedious task. They would like to divide the girls into groups in each stage so that the total number of pairwise comparisons of the girls is as few as possible. Let f(n) be the minimal total number of comparisons that should be made to select the most beautiful participant, if we admit n girls to the first stage.

The organizers of the competition are insane. They give Noora three integers tl and r and ask the poor girl to calculate the value of the following expression: tf(l) + tf(l + 1) + ... + tr - l·f(r). However, since the value of this expression can be quite large the organizers ask her to calculate it modulo 109 + 7. If Noora can calculate the value of this expression the organizers promise her to help during the beauty contest. But the poor girl is not strong in mathematics, so she turned for help to Leha and he turned to you.

Input

The first and single line contains three integers tl and r (1 ≤ t < 109 + 7, 2 ≤ l ≤ r ≤ 5·106).

Output

In the first line print single integer — the value of the expression modulo 109 + 7.

Example
input

Copy
2 2 4
output

Copy
19
Note

Consider the sample.

It is necessary to find the value of .

f(2) = 1. From two girls you can form only one group of two people, in which there will be one comparison.

f(3) = 3. From three girls you can form only one group of three people, in which there will be three comparisons.

f(4) = 3. From four girls you can form two groups of two girls each. Then at the first stage there will be two comparisons, one in each of the two groups. In the second stage there will be two girls and there will be one comparison between them. Total 2 + 1 = 3 comparisons. You can also leave all girls in same group in the first stage. Then  comparisons will occur. Obviously, it's better to split girls into groups in the first way.

Then the value of the expression is 

题意概括:

有N个人参加选美比赛,可以分成N/x,每组x人。每组的比较次数为x(x-1)/2,f[N]为最后决出冠军所需的比较次数,可以通过改变x的值使f[N]改变。题目给出t,l,r(1 ≤ t < 109 + 7, 2 ≤ l ≤ r ≤ 5·106)。求 t^0⋅f(l)+t^1⋅f(l+1)+⋯+t^r−l⋅f(r) 的最小值对1e9+7的模。

解题思路:

要解决题目的那条算式首先需要解决 f ( N ) 这个问题。

f (N) = (N/x) * x*(x-1)/2;

怎样使得 f(N) 尽可能小呢,模拟几个栗子会发现,分组越多比较的次数越少。比如6可以分为3个2或者2个3,所需比较数分别是6和7,8可以分为2个4 或 4个2,分别是 13、10;

所以尽量分下去,直到分到素数 x 为 1,f(N) = N*(N-1)/2;

综上所述(递推方法):

①如果人数为素数,那f[N]=N(N-1)/2;

②如果不是素数,那就找出最小素因子x,分成N/x,每组x人,f[N]=N/x*f[x]+f[N/x]。

官方题解(内附 x 要为素数的证明,不过方法是dp):

Suppose we have already calculated f(2), f(3), ..., f(r). Then calculating the value of the expression is easy.

Consider process of calculating f(x). Suppose we found optimal answer. Represent this answer as sequence of integers d1, d2, ..., dk — on the first stage we will divide girls into groups of d1 participants, on the second stage into groups of d2 participants and so on. Let us prove that all di should be prime.

Suppose some di is a composite number. Then it can be decomposed into two numbers di = a·b. In addition, let n girls are admitted to the i-th stage. Then on current i-th stage  comparisons will occur. But if we divide this stage into two new stages, then number of comparisons is . So, we proved that all di should be prime. Then it's easy to write DP which will be calculated by transition from the state to the states given by dividing current state by prime divisors. For solving this task we can use Eratosthenes sieve.

Total complexity is same as complexity of Eratosthenes sieve: .

In addition you can prove the fact that we should split the girls into groups by prime numbers in the order of their increasing. This optimization significantly accelerates the algorithm.

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define LL long long
using namespace std;
const int MAXN = 5e6+;
const LL mod = 1e9+; bool check[MAXN];
LL prime[MAXN];
LL f[MAXN];
int cnt;
/*
void check_prime() //线性筛求素数
{
cnt = 0;
memset(check, false, sizeof(check));
for(LL i = 2; i <= MAXN; i++){
if(!check[i]) prime[++cnt] = i;
for(int k = 1; k <= cnt; k++){
if(i*prime[k] > MAXN) break;
check[i*prime[k]] = true;
if(i%prime[k]) break;
}
}
}
*/ void check_prime(){
memset(check, false, sizeof(check));
for(int i=;i*i<=MAXN;i++){
if(!check[i]){
prime[cnt++]=i;
for(int j=i*i;j<=MAXN;j+=i){
check[j]=true;
}
}
}
} int main()
{
check_prime(); f[] = ;
for(LL i = ; i < MAXN; i++){
if(!check[i]){
f[i] = (i*(i-)/)%mod;
}
else{
LL fac;
for(int k = ; k < cnt; k++){
if(i%prime[k] == ){
fac = prime[k];
break;
}
}
f[i] = (i/fac * f[fac] + f[i/fac])%mod;
}
} LL T, l, r;
scanf("%I64d", &T);
scanf("%I64d %I64d", &l, &r);
LL ans = ;
for(LL i = r; i >= l; i--){
ans = (ans*T)%mod;
ans = (ans + f[i])%mod;
}
printf("%I64d\n", ans);
return ;
}

学习:

http://codeforces.com/blog/entry/53068?locale=en

https://www.cnblogs.com/fu3638/p/7115096.html

最后留个坑:

线性筛法O(N)求素数过不了,但是用Eratosthenes sieve.O(NlogN)可以。

CodeForces-822D 【最小素因子应用】的更多相关文章

  1. Codeforces 822D My pretty girl Noora(最小素因子的性质)

    题目大意:一场选美比赛有N个人,可以分成N/x,每组x人.每组的比较次数为x(x-1)/2,f[N]为最后决出冠军所需的比较次数,可以通过改变x的值使f[N]改变.题目给出t,l,r(1 ≤ t &l ...

  2. 题解报告:hdu 5750 Dertouzos(最大真约数、最小素因子)

    Problem Description A positive proper divisor is a positive divisor of a number n, excluding n itsel ...

  3. Codeforces 822D My pretty girl Noora - 线性筛 - 动态规划

    In Pavlopolis University where Noora studies it was decided to hold beauty contest "Miss Pavlop ...

  4. Yet Another Maxflow Problem CodeForces - 903G (最小割,线段树)

    大意: 两个n元素集合$A$, $B$, $A_i$与$A_{i+1}$连一条有向边, $B_i$与$B_{i+1}$连一条有向边, 给定$m$条从$A_i$连向$B_j$的有向边, 每次询问修改$A ...

  5. Educational Codeforces Round 21 Problem F (Codeforces 808F) - 最小割 - 二分答案

    Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...

  6. Codeforces 343E 最小割树

    题意及思路:https://www.cnblogs.com/Yuzao/p/8494024.html 最小割树的实现参考了这篇博客:https://www.cnblogs.com/coder-Uran ...

  7. POJ-1811-Prime Test(pollard_rho模板,快速找最小素因子)

    题目传送门 sol:Pollard_Rho的模板题,刚看了Pollard_Rho和Miller_Rabin很多原理性的东西看不懂,只是记住了结论勉强能敲代码. Pollard_Rho #include ...

  8. Pythagorean Triples(Codeforces Round #368 (Div. 2) + 构建直角三角形)

    题目链接: https://codeforces.com/contest/707/problem/C 题目: 题意: 告诉你直角三角形的一条边,要你输出另外两条边. 思路: 我们容易发现除2外的所有素 ...

  9. codeforces 402 D. Upgrading Array(数论+贪心)

    题目链接:http://codeforces.com/contest/402/problem/D 题意:给出一个a串和素数串b .f(1) = 0; p为s的最小素因子如果p不属于b , 否则 . a ...

随机推荐

  1. PIXI AnimatedSprite 及打字爆炸动画(5)

    效果 : 消除字母 当前位置出现爆炸效果 这里使用到了AnimatedSprite 动画  Members An AnimatedSprite is a simple way to display a ...

  2. Android报错

      Error:Execution failed for task ':app:processDebugResources'. > com.android.ide.common.process. ...

  3. 阿里云Centos 7上面安装mysql教程

    1 软件的基本安装过程 1 卸载已有的mysql 1.查看系统是否安装了mysql软件 rpm -qa|grep -i mysql 2.将已经安装过的软件卸载掉.注意:这样的卸载是不彻底,不过这里够用 ...

  4. 1、java线程模型

    要了解多线程,先需要把java线程模型搞清楚,否则有时候很难理清楚一个问题. 硬件多线程: 物理机硬件的并发问题跟jvm中的情况有不少相似之处,物理机的并发处理方案对于虚拟机也有相当大的参考意义.在买 ...

  5. 2.3 js基础--DOM

    一.javascript组成         ECMAScript:核心解释器[为我们提供好了最基本的功能:变量声明.函数.语法.运算].   兼容性:完全兼容.           DoM:文档对象 ...

  6. JS的从理解对象到创建对象

    JavaScript不是一门真正的面向对象语言,因为它连最基本的类的概念都没有,因此它的对象和基于类的语言中的对象也会有所不同.ECMA-262把对象定义为:“无序属性的集合,其属性可以包含基本值.对 ...

  7. 【Shell】shell 判断文件夹或文件是否存在

    1.文件夹不存在则创建,文件夹是directory if [ ! -d "/data/" ];then mkdir /data else echo "文件夹已经存在&qu ...

  8. 深入理解JavaScript系列(32):设计模式之观察者模式

    介绍 观察者模式又叫发布订阅模式(Publish/Subscribe),它定义了一种一对多的关系,让多个观察者对象同时监听某一个主题对象,这个主题对象的状态发生变化时就会通知所有的观察者对象,使得它们 ...

  9. PLC总结

    PLC编程总结 PLC控制部分总体有三大部分组成,PLC硬件,组态以及梯形图程序.PLC硬件应与组态一一对应,不容有任何偏差:而梯形图与操作的组态的IO口也应该一一对应.因此,整个系统达到了由梯形图程 ...

  10. oracle学习篇六:子查询

    -- 1.查询比7654工资要高的员工 select * from emp where sal>(select sal from emp where empno=7654); ---2.查询最低 ...