Error Curves

Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld
& %llu

Appoint description:

Description


Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the formf(x) = ax2 + bx + c.
The quadratic will degrade to linear function ifa = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance
on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple
quadric functions.

The new function F(x) is defined as follow:

F(x) = max(Si(x)), i = 1...n. The domain ofx is [0, 1000].Si(x) is a quadric function.

Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

Input

The input contains multiple test cases. The first line is the number of cases
T
(T < 100). Each case begins with a number n(n ≤ 10000). Followingn lines, each line contains three integersa (0 ≤
a ≤ 100),b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

Output

For each test case, output the answer in a line. Round to 4 digits after the decimal point.

Sample Input

2
1
2 0 0
2
2 0 0
2 -4 2

Sample Output

0.0000
0.5000

大致题意:给了好多抛物线f(i)的a[i], b[i],  c[i], 定义F (i)= max(f(i)) , 求F(x)在区间【0,1000】上的最小值。

解题思路:因为题中给出的a>=0, 所以a有可能为零,此时曲线为直线。否则曲线为开口向上的抛物线,故为下凸函数,所以F(x)也为下凸函数。故可用三分法求F(x)的极值。先算出F(x)的详细值,然后就可直接三分了。详见代码

AC代码:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn = 10000 + 10;
int n, a[maxn], b[maxn], c[maxn]; double f(double x){ //求F(x)
double ans = a[0]*x*x + b[0]*x + c[0];
for(int i=1; i<n; i++){
ans = max(ans, a[i]*x*x+b[i]*x+c[i]);
}
return ans;
} int main(){
// freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--){
scanf("%d", &n);
for(int i=0; i<n; i++)
scanf("%d%d%d", &a[i], &b[i], &c[i]);
double l = 0, r = 1000; //三分求极值
for(int i=0; i<100; i++){
double mid = l + (r-l)/3;
double midmid = r - (r-l)/3;
if(f(mid) < f(midmid)) r = midmid;
else l = mid;
}
printf("%.4lf\n",f(l));
}
return 0;
}

LA 5009 (HDU 3714) Error Curves (三分)的更多相关文章

  1. nyoj 1029/hdu 3714 Error Curves 三分

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3714 懂了三分思想和F(x)函数的单调性质,这题也就是水题了 #include "stdio ...

  2. hdu 3714 Error Curves(三分)

    http://acm.hdu.edu.cn/showproblem.php?pid=3714 [题意]: 题目意思看了很久很久,简单地说就是给你n个二次函数,定义域为[0,1000], 求x在定义域中 ...

  3. hdu 3714 Error Curves(三分)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  4. HDU 3714 Error Curves

    Error Curves 思路:这个题的思路和上一个题的思路一样,但是这个题目卡精度,要在计算时,卡到1e-9. #include<cstdio> #include<cstring& ...

  5. 三分 HDOJ 3714 Error Curves

    题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...

  6. UVA - 1476 Error Curves 三分

                                           Error Curves Josephina is a clever girl and addicted to Machi ...

  7. UVALive 5009 Error Curves 三分

    //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include& ...

  8. Error Curves HDU - 3714

    Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...

  9. HDU 3714/UVA1476 Error Curves

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. Verilog的IDE Quartus II

    Quartus II  主要用于Verilog的开发,他是开发FPGA的利器,但他需要和modelsim相互配合,才能实现它的编写和仿真.modelsim是第三方的EDA,需要另外安装,对于Quart ...

  2. Problem A: 英雄无敌3(1)【dp/待补】

      Problem A: 英雄无敌3(1) Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 86  Solved: 16[Submit][Status][ ...

  3. POJ 1240 Pre-Post-erous! && East Central North America 2002 (由前序后序遍历序列推出M叉树的种类)

    题目链接:http://poj.org/problem?id=1240 本文链接:http://www.cnblogs.com/Ash-ly/p/5482520.html 题意: 通过一棵二叉树的中序 ...

  4. Codeforces 1039A. Timetable

    题目地址:http://codeforces.com/problemset/problem/1039/A 题目的关键在于理清楚思路,然后代码就比较容易写了 对于每一个位置的bus,即对于每一个i(i& ...

  5. 位运算和enum中的位运算

    1.位逻辑非运算 ~ 位逻辑非运算是单目的,只有一个运算对象.位逻辑非运算按位对运算对象的值进行非运算,即:如果某一位等于0,就将其转变为1:如果某一位等于1,就将其转变为0. 比如,对二进制的100 ...

  6. Python __call__内置函数的作用和用法

    开学了进入了实验室,需要协助大师兄做事,主要是OpenStack中的代码解析,但是涉及很多python高级用法,一时间有点麻烦,在做项目的同时慢慢更新博客.这次先写一下__call__的用法,因为经常 ...

  7. Annotation的语法和使用

    http://blog.csdn.net/cdl2008sky/article/details/6265742 (1) .<context:component-scan base-package ...

  8. Exercise01_02

    public class Five{ public static void main(String[] args){ for(int i=0;i<5;i++){ System.out.print ...

  9. Java高级架构师(一)第19节:X-gen生成相应的Visitor

    package cn.javass.themes.smvcsm.visitors; import cn.javass.xgen.genconf.vo.ExtendConfModel; import c ...

  10. 通过Roslyn动态生成程序集

    之前写过篇文章如何通过Roslyn构建自己的C#脚本,今天本来打算测试一下这部分API在新的版本中的变化,结果发现它的脚本引擎找不到了,翻了一下官方文档,貌似说暂时性的移除了.便看了一下它动态生成程序 ...