题目链接

首先,按照题意,把前$60$个素数打出来$[2$ $-$ $281]$。

因为只有$60$个,再加上本宝宝极其懒得写线性筛于是每一个都$O(\sqrt{n})$暴力筛就好了。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n;
int main()
{
// freopen("1.txt","w",stdout);
printf("");//格式问题,以自己爱好稍作更改。
for(int i=;i<=;i++)
{
for(int j=;j*j<=i;j++)
if(i%j==) goto rp;
printf(",%d",i),n++;
rp:;
}
return ;
}

如果我们用$prime[i]$表示第i个素数。
筛出来是这样的:

int prime[]={
,,,,,,,,,
,,,,,,,
,,,,,,,
,,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,
};

---

之后,我们看 清点存款 操作,

问$[1,product]$里,有多少个$num$满足:

$$num*x+product*y=1$$

这,与我们 素数的性质 好像啊。

这就是 $num*x≡1$ $ $ $ $ $(mod$ $ $ $product)$

也就是 $gcd(num$ $,$ $product)$ $=$ $1$

嗯,好,问题转化成了:

求 $[1,product]$ 里,有多少个 $num$ 与 $product$ 互质。

也就是 $\varphi(product)$ 等于多少。

之后,根据欧拉函数的通式。

$$\varphi(n)=n*\prod_{p_i|n}(1-\frac{1}{p_i})=n*\prod_{p_i|n}\frac{p_i-1}{p_i}$$

看数据范围,又让 $mod$ $ $ $p$

所以,

再线性推一下逆元,

求解即可。

---

$ps:$ 如果脸黑被卡常数了的话,可以把 $[1-281]$ 的逆元打表。

大概代码是这样的:

    pni[]=;
for(int i=;i<=;i++)
pni[i]=(long long)(mod-mod/i)*pni[mod%i]%mod;

---

下面,就是区间维护。

题目中说了,~~(在出题人眼里)~~他们的加法相当于我们的乘法。

我们要维护区间 $[a,b]$ 的 “和” 记为 $product$

更改的是某个点(银行)$b_{i}$ 的存款

显然的线段树保存每段区间出现的质因子。

看题面,由于最多出现$60$个质数,我们用一个 $long$ $ $ $long$ 的每一位表示一个质数,然后用或运算$xor$即可实现 “加和” 相乘操作。

然后就……

好好的写代码吧。

不过……

模数为啥不是 $19260817$ 或者是 $998244353$ 或 $64123$ 呢……

---

$ps:$ 一定要看看线段树每次的区间边上判定 $!$ $!$ $!$

本宝宝调了两天 $……$

委屈巴巴。。。

---

上代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define mod 19961993 const int prime[]={
,,,,,,,,,
,,,,,,,
,,,,,,,
,,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,,,,,
,
};//记录质数。 int pni[]; //线段树。
struct data{
long long sum;//区间(和)乘积
long long p;//包含哪些素数。第i个二进制位如果是1,则有prime[i]这个素数,从1开始。
}point[];
data ans;//记录查询答案。 void built(int l,int r,int o)
{
if(l==r) {point[o].sum=;point[o].p=;return ;}
int mid=(l+r)/;
built(l,mid,o*);
built(mid+,r,o*+); // printf("%d %d %d %d\n",l,r,o,mid); point[o].sum=point[o*].sum*point[o*+].sum%mod;
point[o].p=;
// printf("%d %d\n",point[o].sum,point[o].p);
} void chang(int l,int r,int o,const int t,const int k)//第t个点改为k
{
// printf("%d %d %d %d %d\n",&l,&r,&o,&t,&k);
if(l==r){
point[o].sum=k;
long long p=;
for(int i=;i<=;i++){
if((k%prime[i])==) p|=1LL<<(i-);
point[o].p=p;
}
return ;
}
int mid=(l+r)/;
if(t<=mid) chang(l,mid,o*,t,k);
else chang(mid+,r,o*+,t,k);
point[o].sum=point[o*].sum*point[o*+].sum%mod;
point[o].p=point[o*].p|point[o*+].p;
} void quest(int l,int r,int o,int l1,int r1)//查询L到R。
{
if(l1<=l&&r<=r1){
ans.sum=ans.sum*point[o].sum%mod;
ans.p|=point[o].p;
return ;
}
int mid=(l+r)/;
if(l1<=mid) quest(l,mid,o*,l1,r1);
if(mid<r1) quest(mid+,r,o*+,l1,r1);
}
// void debug()
// {
// for(int i=1;i<=100;i++)
// printf("%d %d %d\n",i,point[i].p,point[i].sum);
// } int main()
{ // freopen("1.in","r",stdin);
// freopen("1.out","w",stdout);
built(,,); pni[]=;
for(int i=;i<=;i++)
pni[i]=(long long)(mod-mod/i)*pni[mod%i]%mod;
//线性筛逆元 int tt;
scanf("%d",&tt);
while(tt--)
{
int x;scanf("%d",&x); if(x)
{
int t,k;
scanf("%d%d",&t,&k);
chang(,,,t,k);
} else
{
int l1,r1;
ans.sum=;
ans.p=;
scanf("%d%d",&l1,&r1);
quest(,,,l1,r1); long long f=ans.sum;
for(int i=;i<=;i++)//计算φ
if(ans.p&(1LL<<(i-))) f=f*(prime[i]-)%mod,f=f*pni[prime[i]]%mod;
printf("%d\n",(int)f); }
// debug();
}
return ;//程序拜拜
}

题解 P4140 【奇数国 】的更多相关文章

  1. Bzoj 3813 奇数国 题解 数论+线段树+状压

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 748  Solved: 425[Submit][Status][Discuss] ...

  2. [BZOJ 3813]奇数国

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 736  Solved: 416[Submit][Status][Discuss] ...

  3. 【BZOJ3813】奇数国 线段树+欧拉函数

    [BZOJ3813]奇数国 Description 给定一个序列,每次改变一个位置的数,或是询问一段区间的数的乘积的phi值.每个数都可以表示成前60个质数的若干次方的乘积. Sample Input ...

  4. [BZOJ3813] 奇数国 - 线段树

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 508[Submit][Status][Discuss] ...

  5. AC日记——【清华集训2014】奇数国 uoj 38

    #38. [清华集训2014]奇数国 思路: 题目中的number与product不想冲: 即为number与product互素: 所以,求phi(product)即可: 除一个数等同于在模的意义下乘 ...

  6. 【bzoj3813】: 奇数国 数论-线段树-欧拉函数

    [bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持 ...

  7. 【题解】L 国的战斗续之多路出击 [P2129]

    [题解]L 国的战斗续之多路出击 [P2129] 传送门: \(L\) 国的战斗续之多路出击 \([P2129]\) [题目描述] 给出 \(n\) 个坐标,\(m\) 个指令,指令处理顺序应是从后往 ...

  8. HYSBZ - 3813 奇数国 欧拉函数+树状数组(线段树)

    HYSBZ - 3813奇数国 中文题,巨苟题,巨无敌苟!!首先是关于不相冲数,也就是互质数的处理,欧拉函数是可以求出互质数,但是这里的product非常大,最小都2100000,这是不可能实现的.所 ...

  9. 【数论&线段树】【P4140】[清华集训2015]奇数国

    Description 有一个长为 \(n\) 的序列,保证序列元素不超过 \(10^6\) 且其质因数集是前60个质数集合的子集.初始时全部都是 \(3\),有 \(m\) 次操作,要么要求支持单点 ...

随机推荐

  1. python's eighth day for me

    f : 变量,f_obj, file, f_handler,...文件句柄. open : windows 的系统功能. windows 默认编码方式:gbk.   Linux 默认编码方式:utf ...

  2. 第七章 AOP(待续)

    ···············

  3. CNN感受野计算

    无痛理解CNN中的感受野receptive field CNN中感受野的计算 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是决定某一层输出结果中一个元素所对应的输入层的区域 ...

  4. leetcode812

    class Solution { public: double largestTriangleArea(vector<vector<int>>& points) { d ...

  5. 教你实现GPUImage - OpenGL渲染原理<转>

    http://www.open-open.com/lib/view/open1483943550976.html

  6. Monthly Expense(二分--最小化最大值)

    Farmer John is an astounding accounting wizard and has realized he might run out of money to run the ...

  7. MyEclipse从数据库反向生成实体类通过Hibernate的方式----mysql数据库实例

    1.我们通过DB与数据库建立连接 2.建立web工程,构建Hibernate框架 3.通过table生成实体类

  8. 如何用CURL将文件下载到本地指定文件夹

    若直接调用下载文件的url有重定向,则需先调用第一个方法,获取到跳转后的url,才可直接下载.否则需要手动点击浏览器的下载确定按钮. 调用示例: $imgpath = "http://www ...

  9. grep家族

    grep家族由命令grep.egrep和fgrep组成. grep:在文件中全局查找指定的正则表达式,并且打印所有包含该表达式的行.egrep和fgrep是grep的变体.egrep:grep的扩展, ...

  10. string基本字符系列容器(一)

    C++STL提供了string基本字符系列容器来处理字符串,可以把string理解成字符串类,它提供了添加,删除,替换,查找和比较等丰富的方法. 使用string容器,需要头文件包含声明#includ ...