题目描述

There are n n n lights aligned in a row. These lights are numbered 1 1 1 to n n n from left to right. Initially some of the lights are switched on. Shaass wants to switch all the lights on. At each step he can switch a light on (this light should be switched off at that moment) if there's at least one adjacent light which is already switched on.

He knows the initial state of lights and he's wondering how many different ways there exist to switch all the lights on. Please find the required number of ways modulo $ 1000000007 (10^{9}+7) $ .

输入输出格式

输入格式:

The first line of the input contains two integers n n n and m m m where n n n is the number of lights in the sequence and m m m is the number of lights which are initially switched on, (1<=n<=1000,1<=m<=n) (1<=n<=1000,1<=m<=n) (1<=n<=1000,1<=m<=n) . The second line contains m m m distinct integers, each between 1 1 1 to n n n inclusive, denoting the indices of lights which are initially switched on.

输出格式:

In the only line of the output print the number of different possible ways to switch on all the lights modulo $ 1000000007 (10^{9}+7) $ .

题意翻译

有n盏灯,(0<=n<=1000),有m盏已经点亮,每次只能点亮与已经点亮的灯相邻的灯,求总方案数,答案对1e9+7取模

第一行:

两个整数n,m表示灯的总数和已点亮的灯的数目

第二行:

m个数,表示已点亮的灯的编号

思路:

其实这道题一点儿也不难,就是细节很比较多

给了你这样的一个序列,让你去点灯,我们可以分类讨论一下

如果你点的是两端的区间,那么,对不起,由于你只能点亮相邻的,所以你只能一个一个地点下去

如果你点的是中间的,那么,你会发现,你每次可以点区间的右端点,也可以点区间的左端点(除了最后一次,因为这时左右端点其实是同一个端点)。

这样,每个区间的方案数是(2^(length-1))

但由于你可以交错着取,所以很多时候会有重复问题

所以我们要去重。

而由于模数极大,所以还是逆元吧

(ps:灯的标号给的是无序的,要先排序)

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define p 1000000007
using namespace std;
long long n,m,a,b,x[],k,kl,ans,ny[];
long long res=;
void qny()
{
ny[]=;
for(register int a=;a<=;a++)
{
ny[a]=(p-(p/a))*ny[p%a]%p;
}
}
long long ksm(long long j,long long k)
{
if(k==)
{
res=res%p;
return res;
}
j=j%p;
if(k%==)
{
res=res*j;
res=res%p;
k--;
ksm(j,k);
}
else
{
k=k/;
j=j*j;
j%=p;
ksm(j,k);
}
}
long long jc(int from,int to)
{
long long sd=;
for(int i=from;i<=to;i++)
{
sd=sd*i;
sd=sd%p;
}
return sd;
}
long long jc1(int from,int to)
{
long long sd=;
for(int i=from;i<=to;i++)
{
sd=sd*ny[i];
sd=sd%p;
}
return sd;
}
int main()
{
qny();
ans=;
x[]=;
cin>>n>>m;
x[m+]=n+;
for(a=;a<=m;a++)
{
cin>>x[a];
}
sort(x+,x+m+);
k=n-m;
ans*=jc(,k);
ans=ans%p;
for(a=;a<=m+;a++)
{
kl=x[a]-x[a-]-;
if(kl==)
{
continue;
}
if(a==||a==m+)
{
ans*=jc1(,kl);
ans%=p;
continue;
}
else
{
res=;
ans*=ksm(,kl-);
ans%=p;
ans*=jc1(,kl);
ans%=p;
} }
cout<<ans;
}

CF294C Shaass and Lights(排列组合)的更多相关文章

  1. CF294C Shaass and Lights

    题目大意: 有n盏灯,(0<=n<=1000),有m盏已经点亮,每次只能点亮与已经点亮的灯相邻的灯,求总方案数,答案对1e9+7取模 第一行:两个整数n,m表示灯的总数和已点亮的灯的数目 ...

  2. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

  3. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

  4. 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  5. 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  6. 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  7. hdu1521 排列组合(指数型母函数)

    题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数.         (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...

  8. [leetcode] 题型整理之排列组合

    一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...

  9. 排列组合算法(PHP)

    用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...

随机推荐

  1. select支持多查询,获取分页count

    在我们使用mybatis 时,当我们根据分页去查询数据集时,需要传入的参数有page(页码)和size(每页的条数),而我们期望获取到的数据有,小于或等于size的list数据集,同时我们还需要得到一 ...

  2. oracle学习篇二:常用SQL

    ------------------------1.简单的SQL查询--------------------------select * from emp;select empno,ename,job ...

  3. mysql三:表操作

    一.存储引擎介绍 存储引擎即表类型,mysql根据不同的表类型会有不同的处理机制. 详见:点击查看 二.表的介绍 表相当于文件,表中的一条记录就相当于文件的一行内容,不同的是,表中的一条记录有对应的标 ...

  4. 【Android】6.0 添加Menu菜单组件、Intent启动活动、显式Intent、隐式Intent

    1.0 在helloworld项目基础上创建活动SecondActivity: 2.0 其中main.xml: <?xml version="1.0" encoding=&q ...

  5. drupal 基础理论

    第3章 Drupal 的基本概念 添加新评论 浏览 6795 次 Drupal的基本概念主要包括节点.内容类型.模块.主题和分类等.只有对这些概念有了足够的了解,方能灵活的构建网站.本章将对这些基本概 ...

  6. TiDB, Distributed Database

    https://www.zhihu.com/topic/20062171/top-answers

  7. Jmeter性能测试 入门--转载

    转载: Jmeter性能测试 入门 Jmeter是一款优秀的开源测试工具, 是每个资深测试工程师,必须掌握的测试工具,熟练使用Jmeter能大大提高工作效率. 熟练使用Jmeter后, 能用Jmete ...

  8. 多线程(三)~多线程中数据的可见性-volatile关键字

    我们先来看一段代码: ①.线程类,用全局布尔值控制线程是否结束,每隔1s打印一次当前线程的信息 package com.multiThread.thread; publicclassPrintStri ...

  9. when create a table,then show error ora-00952 tablespace tsb_1 not exist

    QUESTION:When create a table,then show error ora-00952 tablespace tsb_1 not exist. STEP: 1.select us ...

  10. VSCode cpptools 插件在Centos 7下不能正确显示符号列表的解决办法

    vscode 的插件cpptools 0.9.3 需要glibc 2.18的版本,但是Centos 7 下没有这个版本的GLIBC,所以导致链接库丢失,后台服务不能正常运行.按以下步骤操作可修复此问题 ...