bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp
[HAOI2010]软件安装
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 2029 Solved: 811
[Submit][Status][Discuss]
Description
现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。
但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。
我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。
Input
第1行:N, M (0<=N<=100, 0<=M<=500)
第2行:W1, W2, ... Wi, ..., Wn (0<=Wi<=M )
第3行:V1, V2, ..., Vi, ..., Vn (0<=Vi<=1000 )
第4行:D1, D2, ..., Di, ..., Dn (0<=Di<=N, Di≠i )
Output
一个整数,代表最大价值。
Sample Input
5 5 6
2 3 4
0 1 1
Sample Output
HINT
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define N 107
#define M 507
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,cnt,scc,ind,top;
int v[N],w[N];
int sv[N],sw[N];
int dfn[N],low[N],belong[N];
int q[N],f[N][M],in[M];
struct edge{
int to,next;
}e[M],ed[M];int last[N],last2[N];
bool inq[N]; void insert(int u,int v){e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;}
void insert2(int u,int v)
{
in[v]=;
ed[++cnt].to=v;ed[cnt].next=last2[u];last2[u]=cnt;
}
void tarjan(int x)
{
int now=;
low[x]=dfn[x]=++ind;
q[++top]=x;inq[x]=;
for(int i=last[x];i;i=e[i].next)
if(!dfn[e[i].to])
{
tarjan(e[i].to);
low[x]=min(low[x],low[e[i].to]);
}
else if(inq[e[i].to])
low[x]=min(low[x],dfn[e[i].to]);
if(low[x]==dfn[x])
{
scc++;
while(now!=x)
{
now=q[top--];inq[now]=;
belong[now]=scc;
sv[scc]+=v[now];
sw[scc]+=w[now];
}
}
}
void rebuild()
{
cnt=;
for(int x=;x<=n;x++)
for(int i=last[x];i;i=e[i].next)
if(belong[e[i].to]!=belong[x])
insert2(belong[x],belong[e[i].to]);
}
void dp(int x)
{
for(int i=last2[x];i;i=ed[i].next)
{
dp(ed[i].to);
for(int j=m-sw[x];j>=;j--)
{
for(int k=;k<=j;k++)
f[x][j]=max(f[x][j],f[x][k]+f[ed[i].to][j-k]);
}
}
for(int j=m;j>=;j--)
{
if(j>=sw[x])f[x][j]=f[x][j-sw[x]]+sv[x];
else f[x][j]=;
}
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++) w[i]=read();
for(int i=;i<=n;i++) v[i]=read();
for(int i=;i<=n;i++)
{
int x=read();
if(x)insert(x,i);
}
for(int i=;i<=n;i++)
if(!dfn[i])tarjan(i);
rebuild();
for(int i=;i<=scc;i++)
if(!in[i])
insert2(scc+,i);
dp(scc+);
printf("%d\n",f[scc+][m]);
}
bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp的更多相关文章
- BZOJ 2427 /HAOI 2010 软件安装 tarjan缩点+树形DP
终于是道中文题了.... 当时考试的时候就考的这道题.... 果断GG. 思路: 因为有可能存在依赖环,所以呢 先要tarjan一遍 来缩点. 随后就进行一遍树形DP就好了.. x表示当前的节点.j表 ...
- BZOJ 2427: [HAOI2010]软件安装 tarjan + 树形背包
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- 【BZOJ2427】[HAOI2010] 软件安装(缩点+树形DP)
点此看题面 大致题意: 有\(N\)个软件,每个软件有至多一个依赖以及一个所占空间大小\(W_i\),只有当一个软件的直接依赖和所有的间接依赖都安装了,它才能正常工作并造成\(V_i\)的价值.求在容 ...
- [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp
<题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...
- bzoj 2427: [HAOI2010]软件安装【tarjan+树形dp】
一眼最大权闭合子图,然后开始构图,画了画之后发现我其实是个智障网络流满足不了m,于是发现正确的打开方式应该是一眼树上dp 然后仔细看了看性质,发现把依赖关系建成图之后是个奇环森林,这个显然不能直接dp ...
- bzoj 2427: [HAOI2010]软件安装
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- BZOJ 2427 [HAOI2010]软件安装 | 这道树形背包裸题严谨地证明了我的菜
传送门 BZOJ 2427 题解 Tarjan把环缩成点,然后跑树形背包即可. 我用的树形背包是DFS序上搞的那种. 要注意dp数组初始化成-INF! 要注意dp顺推的时候也不要忘记看数组是否越界! ...
- BZOJ 2427: [HAOI2010]软件安装( dp )
软件构成了一些树和一些环, 对于环我们要不不选, 要么选整个环. 跑tarjan缩点后, 新建个root, 往每个入度为0的点(强连通分量) 连边, 然后跑树dp( 01背包 ) ---------- ...
- 【洛谷 P2515】 [HAOI2010]软件安装 (缩点+树形背包)
题目链接 看到代价和价值这两个关键词,肯定是首先要想到背包的. 但是图中并没有说这是棵树,所以先要\(Tarjan\)缩点,然后就是选课了,跑一遍树形背包就好了. 注意:缩点后应该是一个森林,应该用一 ...
随机推荐
- Andy's First Dictionary(uva 10815) set用法
参考:https://www.cnblogs.com/yjlblog/p/6947747.html https://blog.csdn.net/hnust_taoshiqian/article/det ...
- python2.7入门---模块(Module)
来,这次我们就看下Python 模块(Module).它是一个 Python 文件,以 .py 结尾,包含了 Python 对象定义和Python语句.模块让你能够有逻辑地组织你的 Pytho ...
- C#的特性Attribute
一.什么是特性 特性是用于在运行时传递程序中各种元素(比如类.方法.结构.枚举.组件等)的行为信息的声明性标签,这个标签可以有多个.您可以通过使用特性向程序添加声明性信息.一个声明性标签是通过放置在它 ...
- 获取已安装app的bundle id
备注:以下是私有api 苹果审核会被拒绝. 导入头文件 #import <objc/runtime.h> /// 获取其他APP信息(iOS11无效) + (NSArray *)getOt ...
- hadoop中的方法的作用
/* * InputFormat类: * * 作用: * 1.设置输入的形式; * 2.将输入的数据按照相应的形式分割成一个个spilts后再进一步拆分成<key,value> ...
- 【APUE】Chapter1 UNIX System Overview
这章内容就是“provides a whirlwind tour of the UNIX System from a programmer's perspective”. 其实在看这章内容的时候,已经 ...
- 多个Target的使用
背景介绍 开发过程中,我们会在内网搭建一个测试服务器,开发.测试都是在内网进行的.这样产生脏数据不会影响外网的服务器.外网服务器只有最后发布时才会进行一些必要的测试. 还有就是要对同一份代码生成不同的 ...
- 从零开始搭建一个react项目
Nav logo 120 发现 关注 消息 4 搜索 从零开始搭建一个react项目 96 瘦人假噜噜 2017.04.23 23:29* 字数 6330 阅读 32892评论 31喜欢 36 项目地 ...
- DM8168通过GPMC接口与FPGA高速数据通信实现
硬件:TI达芬奇TMS320DM8168(以下简称DSP).EP4CE6E22C8N(以下简称FPGA) 软件:linux-2.6.37 转载请注明出处- http://www.cnblogs.com ...
- Week2 Teamework from Z.XML 软件分析与用户需求调查(三)必应助手体验评测
评测人:毛宇 肖俊鹏 说明:言辞激烈,请勿介意 我花了2天的时间来试用这个软件<必应缤纷桌面手机助手>,有了很多体会,这里,我来谈一下这款软件在体验部分的表现情况. 体验部分主要分为三个部 ...