Description

A tree with N nodes and N-1 edges is given. To connect or disconnect one edge, we need 1 unit of cost respectively. The nodes are labeled from 1 to N. Your job is to transform the tree to a cycle(without superfluous edges) using minimal cost. 
A cycle of n nodes is defined as follows: (1)a graph with n nodes and n edges (2)the degree of every node is 2 (3) each node can reach every other node with these N edges.
 

Input

The first line contains the number of test cases T( T<=10 ). Following lines are the scenarios of each test case.  In the first line of each test case, there is a single integer N( 3<=N<=1000000 ) - the number of nodes in the tree. The following N-1 lines describe the N-1 edges of the tree. Each line has a pair of integer U, V ( 1<=U,V<=N ), describing a bidirectional edge (U, V). 
 

Output

For each test case, please output one integer representing minimal cost to transform the tree to a cycle. 

题目大意:一棵有n个点的树,删边需要1的费用,增边需要1的费用,问最少需要多少费用才能得到一个环,不能用多余的边(即总共n条边)。

思路:首先我们可以这样考虑:我们先删掉x条边,那么之后再加上x+1条边,形成一个环。我们删掉x条边后,所有的点的度都不能大于2,那么就会出现多条链,再用x+1条边把这些链首尾相接就可以形成一个环。现在问题就转化成了给一棵树,问最少删掉多少条边,使得每个点的度不大于2。然后就是树状DP,用dp[i][0]表示,第i个点,连0个或1个子节点(度小于2)的最小费用。用dp[i][1]表示,第i个点,连0个或1个或2个子节点(度小于等于2)的最小费用。这样对每个点选择是不连或者连一个子节点,还是连两个子节点。然后随便搞,时间复杂度为O(n)。

PS:100W个点我看到好多人栈溢出了所以大家还是写非递归吧(实际上会不会溢出我不知道我没试过我一开始就写非递归)……我极少写非递归可能写得比较挫……

代码(2703MS):

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int MAXN = ;
const int MAXE = MAXN * ; int head[MAXN];
int stk[MAXN], stkp[MAXN], top;
int next[MAXE], to[MAXE];
int ecnt, n, T; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} int dp[MAXN][];
//0:连0 or 1个子节点,1:连两个子节点
int solve() {
top = ;
stk[top] = ; stkp[top] = head[];
while(top > ) {
int &p = stkp[top], u = stk[top];
if(to[p] == stk[top - ]) p = next[p];
if(p) {
int &v = to[p];
++top; stk[top] = v; stkp[top] = head[v];
p = next[p];
}
else {
int min1 = MAXN, min2 = MAXN;
dp[u][] = ;
for(int q = head[u]; q; q = next[q]) {
int &v = to[q];
if(v == stk[top - ]) continue;
++dp[u][];
dp[u][] += min(dp[v][], dp[v][]);
int x = dp[v][] - min(dp[v][], dp[v][]);
if(x < min1) {
min2 = min1;
min1 = x;
}
else min2 = min(min2, x);
}
int best = dp[u][];
dp[u][] = min(dp[u][], best - + min1);
dp[u][] = min(dp[u][], best - + min1 + min2);
--top;
}
}
return * min(dp[][], dp[][]) + ;
} int main() {
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
init();
int u, v;
for(int i = ; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
}
printf("%d\n", solve());
}
}

HDU 4714 Tree2cycle(树状DP)(2013 ACM/ICPC Asia Regional Online ―― Warmup)的更多相关文章

  1. hduoj 4710 Balls Rearrangement 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4710 Balls Rearrangement Time Limit: 6000/3000 MS (Java/Ot ...

  2. hduoj 4708 Rotation Lock Puzzle 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4708 Rotation Lock Puzzle Time Limit: 2000/1000 MS (Java/O ...

  3. hduoj 4715 Difference Between Primes 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4715 Difference Between Primes Time Limit: 2000/1000 MS (J ...

  4. hduoj 4712 Hamming Distance 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4712 Hamming Distance Time Limit: 6000/3000 MS (Java/Other ...

  5. hduoj 4707 Pet 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4707 Pet Time Limit: 4000/2000 MS (Java/Others)    Memory ...

  6. hduoj 4706 Children&#39;s Day 2013 ACM/ICPC Asia Regional Online —— Warmup

    http://acm.hdu.edu.cn/showproblem.php?pid=4706 Children's Day Time Limit: 2000/1000 MS (Java/Others) ...

  7. hduoj 4706 Herding 2013 ACM/ICPC Asia Regional Online —— Warmup

    hduoj 4706 Children's Day 2013 ACM/ICPC Asia Regional Online —— Warmup Herding Time Limit: 2000/1000 ...

  8. HDU 4719 Oh My Holy FFF(DP+线段树)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description N soldiers from the famous "*FFF* army" is standing in a line, from left to ri ...

  9. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

随机推荐

  1. Java基础——线程复习总结

                                                                                                    线程 T ...

  2. Python Json模块中dumps、loads、dump、load函数介绍哦

    来自: https://www.jb51.net/article/139498.htm 1.json.dumps()       json.dumps()用于将dict类型的数据转成str,因为如果直 ...

  3. 前端javaScript经典面试题

    1.alert(1&&2),alert(1||0) alert(1&&2)的结果是2 只要“&&”前面是false,无论“&&”后面是t ...

  4. Angular2入门学习

    最近项目使用angular2,1和2版本变化大变样.下面总结一些学习网址及安装步骤. 中文官网(必看): https://angular.cn 懒人学习: http://www.imooc.com/l ...

  5. Mina 组件介绍之 IoBuffer

    在Java NIO 中,ByteBuffer通常作为通信中传递消息的载体.而在Mina中,采用了IoBuffer代替ByteBuffer.Mina给出了不用ByteBuffer的两个主要理由: 1.  ...

  6. EpiiServer 更快捷更方便的php+nginx环境定制化方案

    EpiiServer是什么 更快捷更方便的php+nginx多应用部署环境. github仓库首页 https://github.com/epaii/epii-server gitee仓库 https ...

  7. 如何用Python做自动化特征工程

    机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理.而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练那样能产生直接可用的结果.本文作者将使用 ...

  8. POJ2553 汇点个数(强连通分量

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12070   Accepted: ...

  9. Python3爬虫(五)解析库的使用之XPath

    Infi-chu: http://www.cnblogs.com/Infi-chu/ XPath: 全称是 XML Path Language,XML路径语言,它是一门在XML文档中和HTML文档中查 ...

  10. (数据科学学习手札24)逻辑回归分类器原理详解&Python与R实现

    一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们 ...