实战小项目之基于yolo的目标检测web api实现
上个月,对微服务及web service有了一些想法,看了一本app后台开发及运维的书,主要是一些概念性的东西,对service有了一些基本了解。互联网最开始的构架多是cs构架,浏览器兴起以后,变成了bs,最近几年,随着移动互联网的兴起,cs构架再次火了起来,有了一个新的概念,web service。
最近两天,想结合自己这段时间学的东西,实现一个cs构架的service接口。说一下大体流程,client上传图片到http服务器,http后台使用yolo进行图片的检测,之后将检测结果封装成json返回到client,client进行解析显示。
client
使用libcurl作为http请求工具,使用rapidjson进行结果json数据的解析
上传图片时,没有使用标准的http多媒体方式,而是使用post 二进制流的方式,比较笨,有待改进。
server
物体检测识别使用yolo c语言版本,修改原工程darknet的main,引入自己的main,实现直接检测的功能,main的流程:
导入yolo参数--必要初始化--fork子进程--安装信号--初始化fifo--sleep等待图片上传 接收信号唤醒--读取图像--预测-写入json文件--fifo写唤醒子进程
| | |
执行libevent实现的http server--eventloop监听--有文件上传结束--signal 父进程--阻塞在fifo读 读取json,http返回
具体代码
client
extern "C"{
#include <unistd.h>
#include <sys/types.h>
#include <time.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h> //iso
#include <stdio.h>
#include <stdlib.h>
#include <string.h> //others
#include "curl/curl.h"
} //c++
#include <iostream>
#include <string>
#include <fstream>
#include "rapidjson/document.h"
#include "rapidjson/stringbuffer.h"
#include "rapidjson/writer.h" #define psln(x) std::cout << #x " = " << (x) << std::endl using namespace std; size_t WriteFunction(void *input, size_t uSize, size_t uCount, void *arg) {
size_t uLen = uSize * uCount;
string *pStr = (string*) (arg);
pStr->append((char*) (input), uLen);
return uLen;
} int main(int argc,char **argv){
if(argc<){
printf("usage:./a.out uri pic\n");
exit(-);
}
CURL *pCurl = NULL;
CURLcode code;
code = curl_global_init(CURL_GLOBAL_DEFAULT);
if (code != CURLE_OK) {
cout << "curl global init err" << endl;
return -;
}
pCurl = curl_easy_init();
if (pCurl == NULL) {
cout << "curl easy init err" << endl;
return -;
} curl_slist *pHeaders = NULL;
string sBuffer;
string header = "username:tla001";
pHeaders = curl_slist_append(pHeaders, header.c_str()); ifstream in;
in.open(argv[], ios::in | ios::binary);
if (!in.is_open()) {
printf("open err\n");
exit(-);
}
in.seekg(, ios_base::end);
const size_t maxSize = in.tellg();
in.seekg();
char * picBin = new char[maxSize];
in.read(picBin, maxSize);
in.close();
cout << maxSize << endl; size_t sendSize = maxSize + sizeof(size_t);
char *sendBuff = new char[sendSize];
// sprintf(sendBuff, "%d", maxSize);
memcpy(sendBuff, &maxSize, sizeof(size_t));
// size_t tmp = 0;
// memcpy(&tmp, sendBuff, sizeof(size_t));
// cout << "tmp=" << tmp << endl;
memcpy(sendBuff + sizeof(size_t), picBin, maxSize);
curl_easy_setopt(pCurl, CURLOPT_URL, argv[]);
curl_easy_setopt(pCurl, CURLOPT_HTTPHEADER, pHeaders);
curl_easy_setopt(pCurl, CURLOPT_TIMEOUT, );
// curl_easy_setopt(pCurl, CURLOPT_HEADER, 1);
curl_easy_setopt(pCurl, CURLOPT_POST, 1L);
curl_easy_setopt(pCurl, CURLOPT_POSTFIELDS, sendBuff);
curl_easy_setopt(pCurl, CURLOPT_POSTFIELDSIZE, sendSize);
curl_easy_setopt(pCurl, CURLOPT_WRITEFUNCTION, &WriteFunction);
curl_easy_setopt(pCurl, CURLOPT_WRITEDATA, &sBuffer); code = curl_easy_perform(pCurl);
if (code != CURLE_OK) {
cout << "curl perform err,retcode="<<code << endl;
return -;
}
long retcode = ;
code = curl_easy_getinfo(pCurl, CURLINFO_RESPONSE_CODE, &retcode);
if (code != CURLE_OK) {
cout << "curl perform err" << endl;
return -;
}
//cout << "[http return code]: " << retcode << endl;
//cout << "[http context]: " << endl << sBuffer << endl;
using rapidjson::Document;
Document doc;
doc.Parse<>(sBuffer.c_str());
if (doc.HasParseError()) {
rapidjson::ParseErrorCode code = doc.GetParseError();
psln(code);
return -;
}
using rapidjson::Value;
Value &content = doc["content"];
if (content.IsArray()) {
for (int i = ; i < content.Size(); i++) {
Value &v = content[i];
assert(v.IsObject());
cout<<"object "<<"["<<i+<<"]"<<endl;
if (v.HasMember("class") && v["class"].IsString()) {
cout <<"\t[class]:"<<v["class"].GetString()<<endl;
}
if (v.HasMember("prob") && v["prob"].IsDouble()) {
cout <<"\t[prob]:"<<v["prob"].GetDouble()<<endl;
}
cout<<"\t***************************"<<endl;
if (v.HasMember("left") && v["left"].IsInt()) {
cout <<"\t[left]:"<<v["left"].GetInt()<<endl;
}
if (v.HasMember("right") && v["right"].IsInt()) {
cout <<"\t[right]:"<<v["right"].GetInt()<<endl;
}
if (v.HasMember("top") && v["top"].IsInt()) {
cout <<"\t[top]:"<<v["top"].GetInt()<<endl;
}
if (v.HasMember("bot") && v["bot"].IsInt()) {
cout <<"\t[bot]:"<<v["bot"].GetInt()<<endl;
}
cout<<endl; }
} delete[] picBin;
delete[] sendBuff;
curl_easy_cleanup(pCurl); curl_global_cleanup();
return ;
}
server
main.c
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h> #include "parser.h"
#include "utils.h"
#include "cuda.h"
#include "blas.h"
#include "connected_layer.h" extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);
extern void run_voxel(int argc, char **argv);
extern void run_yolo(int argc, char **argv);
extern void run_detector(int argc, char **argv);
extern void run_coco(int argc, char **argv);
extern void run_writing(int argc, char **argv);
extern void run_captcha(int argc, char **argv);
extern void run_nightmare(int argc, char **argv);
extern void run_dice(int argc, char **argv);
extern void run_compare(int argc, char **argv);
extern void run_classifier(int argc, char **argv);
extern void run_regressor(int argc, char **argv);
extern void run_char_rnn(int argc, char **argv);
extern void run_vid_rnn(int argc, char **argv);
extern void run_tag(int argc, char **argv);
extern void run_cifar(int argc, char **argv);
extern void run_go(int argc, char **argv);
extern void run_art(int argc, char **argv);
extern void run_super(int argc, char **argv);
extern void run_lsd(int argc, char **argv); void average(int argc, char *argv[])
{
char *cfgfile = argv[];
char *outfile = argv[];
gpu_index = -;
network net = parse_network_cfg(cfgfile);
network sum = parse_network_cfg(cfgfile); char *weightfile = argv[];
load_weights(&sum, weightfile); int i, j;
int n = argc - ;
for(i = ; i < n; ++i){
weightfile = argv[i+];
load_weights(&net, weightfile);
for(j = ; j < net.n; ++j){
layer l = net.layers[j];
layer out = sum.layers[j];
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
axpy_cpu(l.n, , l.biases, , out.biases, );
axpy_cpu(num, , l.weights, , out.weights, );
if(l.batch_normalize){
axpy_cpu(l.n, , l.scales, , out.scales, );
axpy_cpu(l.n, , l.rolling_mean, , out.rolling_mean, );
axpy_cpu(l.n, , l.rolling_variance, , out.rolling_variance, );
}
}
if(l.type == CONNECTED){
axpy_cpu(l.outputs, , l.biases, , out.biases, );
axpy_cpu(l.outputs*l.inputs, , l.weights, , out.weights, );
}
}
}
n = n+;
for(j = ; j < net.n; ++j){
layer l = sum.layers[j];
if(l.type == CONVOLUTIONAL){
int num = l.n*l.c*l.size*l.size;
scal_cpu(l.n, ./n, l.biases, );
scal_cpu(num, ./n, l.weights, );
if(l.batch_normalize){
scal_cpu(l.n, ./n, l.scales, );
scal_cpu(l.n, ./n, l.rolling_mean, );
scal_cpu(l.n, ./n, l.rolling_variance, );
}
}
if(l.type == CONNECTED){
scal_cpu(l.outputs, ./n, l.biases, );
scal_cpu(l.outputs*l.inputs, ./n, l.weights, );
}
}
save_weights(sum, outfile);
} void speed(char *cfgfile, int tics)
{
if (tics == ) tics = ;
network net = parse_network_cfg(cfgfile);
set_batch_network(&net, );
int i;
time_t start = time();
image im = make_image(net.w, net.h, net.c*net.batch);
for(i = ; i < tics; ++i){
network_predict(net, im.data);
}
double t = difftime(time(), start);
printf("\n%d evals, %f Seconds\n", tics, t);
printf("Speed: %f sec/eval\n", t/tics);
printf("Speed: %f Hz\n", tics/t);
} void operations(char *cfgfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
int i;
long ops = ;
for(i = ; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w;
} else if(l.type == CONNECTED){
ops += 2l * l.inputs * l.outputs;
}
}
printf("Floating Point Operations: %ld\n", ops);
printf("Floating Point Operations: %.2f Bn\n", (float)ops/.);
} void oneoff(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
int oldn = net.layers[net.n - ].n;
int c = net.layers[net.n - ].c;
scal_cpu(oldn*c, ., net.layers[net.n - ].weights, );
scal_cpu(oldn, , net.layers[net.n - ].biases, );
net.layers[net.n - ].n = ;
net.layers[net.n - ].biases += ;
net.layers[net.n - ].weights += *c;
if(weightfile){
load_weights(&net, weightfile);
}
net.layers[net.n - ].biases -= ;
net.layers[net.n - ].weights -= *c;
net.layers[net.n - ].n = oldn;
printf("%d\n", oldn);
layer l = net.layers[net.n - ];
copy_cpu(l.n/, l.biases, , l.biases + l.n/, );
copy_cpu(l.n/, l.biases, , l.biases + *l.n/, );
copy_cpu(l.n/*l.c, l.weights, , l.weights + l.n/*l.c, );
copy_cpu(l.n/*l.c, l.weights, , l.weights + *l.n/*l.c, );
*net.seen = ;
save_weights(net, outfile);
} void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights_upto(&net, weightfile, , net.n);
load_weights_upto(&net, weightfile, l, net.n);
}
*net.seen = ;
save_weights_upto(net, outfile, net.n);
} void partial(char *cfgfile, char *weightfile, char *outfile, int max)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights_upto(&net, weightfile, , max);
}
*net.seen = ;
save_weights_upto(net, outfile, max);
} #include "convolutional_layer.h"
void rescale_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int i;
for(i = ; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
rescale_weights(l, , -.);
break;
}
}
save_weights(net, outfile);
} void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int i;
for(i = ; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL){
rgbgr_weights(l);
break;
}
}
save_weights(net, outfile);
} void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if (weightfile) {
load_weights(&net, weightfile);
}
int i;
for (i = ; i < net.n; ++i) {
layer l = net.layers[i];
if (l.type == CONVOLUTIONAL && l.batch_normalize) {
denormalize_convolutional_layer(l);
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
}
}
save_weights(net, outfile);
} layer normalize_layer(layer l, int n)
{
int j;
l.batch_normalize=;
l.scales = calloc(n, sizeof(float));
for(j = ; j < n; ++j){
l.scales[j] = ;
}
l.rolling_mean = calloc(n, sizeof(float));
l.rolling_variance = calloc(n, sizeof(float));
return l;
} void normalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
int i;
for(i = ; i < net.n; ++i){
layer l = net.layers[i];
if(l.type == CONVOLUTIONAL && !l.batch_normalize){
net.layers[i] = normalize_layer(l, l.n);
}
if (l.type == CONNECTED && !l.batch_normalize) {
net.layers[i] = normalize_layer(l, l.outputs);
}
if (l.type == GRU && l.batch_normalize) {
*l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
*l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
*l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
*l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
*l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
*l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
net.layers[i].batch_normalize=;
}
}
save_weights(net, outfile);
} void statistics_net(char *cfgfile, char *weightfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if (weightfile) {
load_weights(&net, weightfile);
}
int i;
for (i = ; i < net.n; ++i) {
layer l = net.layers[i];
if (l.type == CONNECTED && l.batch_normalize) {
printf("Connected Layer %d\n", i);
statistics_connected_layer(l);
}
if (l.type == GRU && l.batch_normalize) {
printf("GRU Layer %d\n", i);
printf("Input Z\n");
statistics_connected_layer(*l.input_z_layer);
printf("Input R\n");
statistics_connected_layer(*l.input_r_layer);
printf("Input H\n");
statistics_connected_layer(*l.input_h_layer);
printf("State Z\n");
statistics_connected_layer(*l.state_z_layer);
printf("State R\n");
statistics_connected_layer(*l.state_r_layer);
printf("State H\n");
statistics_connected_layer(*l.state_h_layer);
}
printf("\n");
}
} void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
{
gpu_index = -;
network net = parse_network_cfg(cfgfile);
if (weightfile) {
load_weights(&net, weightfile);
}
int i;
for (i = ; i < net.n; ++i) {
layer l = net.layers[i];
if (l.type == CONVOLUTIONAL && l.batch_normalize) {
denormalize_convolutional_layer(l);
net.layers[i].batch_normalize=;
}
if (l.type == CONNECTED && l.batch_normalize) {
denormalize_connected_layer(l);
net.layers[i].batch_normalize=;
}
if (l.type == GRU && l.batch_normalize) {
denormalize_connected_layer(*l.input_z_layer);
denormalize_connected_layer(*l.input_r_layer);
denormalize_connected_layer(*l.input_h_layer);
denormalize_connected_layer(*l.state_z_layer);
denormalize_connected_layer(*l.state_r_layer);
denormalize_connected_layer(*l.state_h_layer);
l.input_z_layer->batch_normalize = ;
l.input_r_layer->batch_normalize = ;
l.input_h_layer->batch_normalize = ;
l.state_z_layer->batch_normalize = ;
l.state_r_layer->batch_normalize = ;
l.state_h_layer->batch_normalize = ;
net.layers[i].batch_normalize=;
}
}
save_weights(net, outfile);
} void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
{
network net = load_network(cfgfile, weightfile, );
image *ims = get_weights(net.layers[]);
int n = net.layers[].n;
int z;
for(z = ; z < num; ++z){
image im = make_image(h, w, );
fill_image(im, .);
int i;
for(i = ; i < ; ++i){
image r = copy_image(ims[rand()%n]);
rotate_image_cw(r, rand()%);
random_distort_image(r, , 1.5, 1.5);
int dx = rand()%(w-r.w);
int dy = rand()%(h-r.h);
ghost_image(r, im, dx, dy);
free_image(r);
}
char buff[];
sprintf(buff, "%s/gen_%d", prefix, z);
save_image(im, buff);
free_image(im);
}
} void visualize(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
visualize_network(net);
#ifdef OPENCV
cvWaitKey();
#endif
} int running=;
int exitFlag=;
void sigHandle(int signal){
if(signal==SIGUSR1){
printf("rec SIGUSR1\n");
running=;
}
if(signal==SIGINT){
printf("rec SIGINT\n");
exitFlag=;
}
}
int main(int argc, char **argv)
{
gpu_index = find_int_arg(argc, argv, "-i", );
if(find_arg(argc, argv, "-nogpu")) {
gpu_index = -;
} #ifndef GPU
gpu_index = -;
#else
if(gpu_index >= ){
cuda_set_device(gpu_index);
}
#endif float thresh = find_float_arg(argc, argv, "-thresh", .);
char *filename ="test.jpg";
char *outfile = find_char_arg(argc, argv, "-out", );
int fullscreen = find_arg(argc, argv, "-fullscreen");
char *cfgfile="cfg/yolo.cfg";
char *weightfile="yolo.weights";
char *datacfg="cfg/coco.data";
float hier_thresh=0.5;
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
char **names = get_labels(name_list); image **alphabet = load_alphabet();
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, );
srand();
clock_t time;
char buff[];
char *input = buff;
int j;
float nms=.;
int ret;
int childPid=;
if((ret=fork())<)
exit(-);
else if(ret==){
printf("child pid :%d\n",childPid=getpid());
printf("parent pid:%d\n",getppid());
ServerRun();
} if(signal(SIGUSR1,sigHandle)==SIG_ERR){
perror("set signal err");
}
if(signal(SIGINT,sigHandle)==SIG_ERR){
perror("set signal err");
} const char * FIFO_NAME="/tmp/myfifo";
if(access(FIFO_NAME,F_OK)==-){
int res=mkfifo(FIFO_NAME,);
if(res!=){
printf("could not create fifo\n");
exit(-);
}
}
int fifo_fd=open(FIFO_NAME,O_WRONLY); layer l = net.layers[net.n-]; box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
for(j = ; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes + , sizeof(float *)); while(!exitFlag){
while(!running){
if(exitFlag)
break;
sleep();
}
if(exitFlag)
break;
if(filename){
strncpy(input, filename, );
}
image im = load_image_color(input,,);
image sized = letterbox_image(im, net.w, net.h);
//image sized = resize_image(im, net.w, net.h);
//image sized2 = resize_max(im, net.w);
//image sized = crop_image(sized2, -((net.w - sized2.w)/2), -((net.h - sized2.h)/2), net.w, net.h);
//resize_network(&net, sized.w, sized.h); float *X = sized.data;
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
get_region_boxes(l, im.w, im.h, net.w, net.h, thresh, probs, boxes, , , hier_thresh, );
if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
//else if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms);
draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
if(outfile){
save_image(im, outfile);
}
else{
save_image(im, "predictions");
#ifdef OPENCV
cvNamedWindow("predictions", CV_WINDOW_NORMAL);
if(fullscreen){
cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);
}
show_image(im, "predictions");
cvWaitKey();
cvDestroyAllWindows();
#endif
} free_image(im);
free_image(sized); // if (filename) break;
running=;
int res=write(fifo_fd,"",);
if(res==-){
printf("write fifo err\n");
// exit(-1);
}
}
if(kill(childPid,)==){
waitpid(childPid,NULL,);
} close(fifo_fd);
free(boxes);
free_ptrs((void **)probs, l.w*l.h*l.n); return ;
}
eventserver.c
/*
* eventserver.c
*
* Created on: Jun 13, 2017
* Author: tla001
*/
#include <unistd.h>
#include <sys/types.h>
#include <time.h>
#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <arpa/inet.h> //iso
#include <stdio.h>
#include <stdlib.h>
#include <string.h> //others
#include <event2/event-config.h>
#include <event2/bufferevent.h>
#include <event2/buffer.h>
#include <event2/listener.h>
#include <event2/util.h>
#include <event2/event.h>
#include <event2/http.h>
#include <event2/keyvalq_struct.h>
#include <event2/http_struct.h>
#include <event2/buffer_compat.h> #include "cJSON.h" void test_request_cb(struct evhttp_request *req, void *arg) {
int ppid=getppid();
int type = evhttp_request_get_command(req);
const char *requestUri = evhttp_request_get_uri(req);
if (EVHTTP_REQ_GET == type) {
printf("method:GET uri:%s\n", requestUri);
} else if (EVHTTP_REQ_POST == type) {
printf("method:POST uri:%s\n", requestUri);
} char *post_data = (char *) EVBUFFER_DATA(req->input_buffer);
// printf("post data: %s", post_data);
size_t maxSize = ;
memcpy(&maxSize, post_data, sizeof(size_t)); FILE *fp = fopen("test.jpg", "wb");
fwrite(post_data + sizeof(size_t), , maxSize, fp);
fclose(fp);
kill(ppid,SIGUSR1);
const char *FIFO_NAME="/tmp/myfifo";
int fifo_fd=open(FIFO_NAME,O_RDONLY);
char tmp=;
int res=read(fifo_fd,&tmp,);
if(res==-){
printf("read err\n");
goto THISEXIT;
}
close(fifo_fd);
printf("fifo tmp=%c\n", tmp);
char *resData="rec";
if(tmp==''){
FILE *fp=fopen("res.json","rb");
if(fp==NULL)
goto THISEXIT;
fseek(fp,,SEEK_END);
size_t size=ftell(fp);
rewind(fp);
resData=NULL;
resData=(char*)malloc(sizeof(char)*size+);
int readSize=fread(resData,,size,fp);
if(readSize!=size){
printf("read err\n");
}
resData[sizeof(char)*size]='\0';
printf("%s\n", resData);
fclose(fp);
} printf("rec data len:%d\n", strlen(resData));
struct evbuffer *buf1 = evbuffer_new();
evbuffer_add_printf(buf1, resData);
evhttp_send_reply(req, , "OK", buf1);
if(resData&&tmp=='')
free(resData);
return ;
THISEXIT:
kill(ppid,SIGINT); exit(-);
}
void ServerRun() {
int port = ; struct event_base *base;
struct evhttp *http;
struct evhttp_bound_socket *handle; if (signal(SIGPIPE, SIG_IGN) == SIG_ERR) {
printf("signal error,error[%d],error[%s]", errno, strerror(errno));
exit(-);
}
base = event_base_new();
if (!base) {
printf("create an event_base err\n");
exit(-);
}
http = evhttp_new(base);
if (!http) {
printf("create evhttp err\n");
exit(-);
}
evhttp_set_cb(http, "/test", test_request_cb, NULL); handle = evhttp_bind_socket_with_handle(http, "0.0.0.0", port);
if (!handle) {
printf("bind to port[%d] err\n", port);
exit(-);
} {
struct sockaddr_storage ss;
evutil_socket_t fd;
ev_socklen_t socklen = sizeof(ss);
char addrbuf[];
void *inaddr;
const char *addr;
int got_port = -;
fd = evhttp_bound_socket_get_fd(handle);
memset(&ss, , sizeof(ss));
if (getsockname(fd, (struct sockaddr*) &ss, &socklen)) {
perror("getsockname failed");
exit(-);
}
if (ss.ss_family == AF_INET) {
got_port = ntohs(((struct sockaddr_in*) &ss)->sin_port);
inaddr = &((struct sockaddr_in*) &ss)->sin_addr;
} else if (ss.ss_family == AF_INET6) {
got_port = ntohs(((struct sockaddr_in6*) &ss)->sin6_port);
inaddr = &((struct sockaddr_in6*) &ss)->sin6_addr;
} else {
printf("Weird address family\n");
exit();
} addr = evutil_inet_ntop(ss.ss_family, inaddr, addrbuf, sizeof(addrbuf));
if (addr) {
printf("Listening on %s:%d\n", addr, got_port);
} else {
printf("evutil_inet_ntop failed\n");
exit(-);
}
}
event_base_dispatch(base);
}
image.c修改一下函数
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes)
{ int i;
cJSON *res=cJSON_CreateObject();
cJSON *content,*rec;
cJSON_AddItemToObject(res,"content",content=cJSON_CreateArray());
for(i = ; i < num; ++i){
int class = max_index(probs[i], classes);
float prob = probs[i][class];
if(prob > thresh){ int width = im.h * .; if(){
width = pow(prob, ./.)*+;
alphabet = ;
} //printf("%d %s: %.0f%%\n", i, names[class], prob*100);
// printf("%s: %.0f%%\n", names[class], prob*100);
int offset = class* % classes;
float red = get_color(,offset,classes);
float green = get_color(,offset,classes);
float blue = get_color(,offset,classes);
float rgb[]; //width = prob*20+2; rgb[] = red;
rgb[] = green;
rgb[] = blue;
box b = boxes[i]; int left = (b.x-b.w/.)*im.w;
int right = (b.x+b.w/.)*im.w;
int top = (b.y-b.h/.)*im.h;
int bot = (b.y+b.h/.)*im.h; if(left < ) left = ;
if(right > im.w-) right = im.w-;
if(top < ) top = ;
if(bot > im.h-) bot = im.h-; cJSON_AddItemToObject(content,"rec",rec=cJSON_CreateObject());
cJSON_AddStringToObject(rec,"class",names[class]);
cJSON_AddNumberToObject(rec,"prob",prob*);
cJSON_AddNumberToObject(rec,"left",left);
cJSON_AddNumberToObject(rec,"right",right);
cJSON_AddNumberToObject(rec,"top",top);
cJSON_AddNumberToObject(rec,"bot",bot); draw_box_width(im, left, top, right, bot, width, red, green, blue);
if (alphabet) {
image label = get_label(alphabet, names[class], (im.h*.)/);
draw_label(im, top + width, left, label, rgb);
free_image(label);
}
}
}
char *resStr=cJSON_Print(res);
cJSON_Delete(res);
// printf("%s\n", resStr);
FILE *fp=fopen("res.json","wb");
fwrite(resStr,,strlen(resStr),fp);
fclose(fp);
}
Makefile做了必要的修改
GPU=1
CUDNN=1
OPENCV=1
DEBUG=0 ARCH= -gencode arch=compute_20,code=[sm_20,sm_21] \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52] # This is what I use, uncomment if you know your arch and want to specify
# ARCH= -gencode arch=compute_52,code=compute_52 VPATH=./src/
EXEC=myapp
OBJDIR=./obj/ CC=gcc
NVCC=nvcc
OPTS=-Ofast
LDFLAGS= -lm -pthread -L/usr/local/libevent/lib -levent
COMMON=-I/usr/local/libevent/include
CFLAGS=-Wall -Wfatal-errors ifeq ($(DEBUG), 1)
OPTS=-O0 -g
endif CFLAGS+=$(OPTS) ifeq ($(OPENCV), 1)
COMMON+= -DOPENCV
CFLAGS+= -DOPENCV
LDFLAGS+= `pkg-config --libs opencv`
COMMON+= `pkg-config --cflags opencv`
endif ifeq ($(GPU), 1)
COMMON+= -DGPU -I/usr/local/cuda/include/
CFLAGS+= -DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif ifeq ($(CUDNN), 1)
COMMON+= -DCUDNN
CFLAGS+= -DCUDNN
LDFLAGS+= -lcudnn
endif OBJ=main.o eventserver.o cJSON.o gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o regressor.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o lsd.o super.o voxel.o tree.o
ifeq ($(GPU), 1)
LDFLAGS+= -lstdc++
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
endif OBJS = $(addprefix $(OBJDIR), $(OBJ))
DEPS = $(wildcard src/*.h) Makefile all: obj backup results $(EXEC) $(EXEC): $(OBJS)
$(CC) $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS) $(OBJDIR)%.o: %.c $(DEPS)
$(CC) $(COMMON) $(CFLAGS) -c $< -o $@ $(OBJDIR)%.o: %.cu $(DEPS)
$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@ obj:
mkdir -p obj
backup:
mkdir -p backup
results:
mkdir -p results .PHONY: clean clean:
rm -rf $(OBJS) $(EXEC)
在使用进程控制的时候,有一些防止出错的机制。
本项目涉及的技术yolo检测 --libevent http server --libcurl http client --http json
实战小项目之基于yolo的目标检测web api实现的更多相关文章
- Flask框架的学习与实战(二):实战小项目
昨天写了一篇flask开发环境搭建,今天继续,进行一个实战小项目-blog系统. blog系统很简单,只有一个页面,然而麻雀虽小五脏俱全.这里目的不是为了做项目而做项目,这篇文章本意是通过这次练习传达 ...
- ASP.NET Core 2.1 Web API + Identity Server 4 + Angular 6 + Angular Material 实战小项目视频
视频简介 ASP.NET Core Web API + Angular 6的教学视频 我是后端开发人员, 前端的Angular部分讲的比较差一些, 可以直接看代码!!!! 这是一个小项目的实战视频, ...
- 谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN
谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 ...
- 10分钟内基于gpu的目标检测
10分钟内基于gpu的目标检测 Object Detection on GPUs in 10 Minutes 目标检测仍然是自动驾驶和智能视频分析等应用的主要驱动力.目标检测应用程序需要使用大量数据集 ...
- [炼丹术]基于SwinTransformer的目标检测训练模型学习总结
基于SwinTransformer的目标检测训练模型学习总结 一.简要介绍 Swin Transformer是2021年提出的,是一种基于Transformer的一种深度学习网络结构,在目标检测.实例 ...
- 实战小项目BUG纪录
果然,作为程序员最可爱的女朋友就是各种BUG,解决了你的开发能力和开发效率就会上升到一个新的层次.反之,在你面对BUG的时候,如果轻易的就放弃了,你也就失去了一次自我成长的机会.学习就是这样的,我们有 ...
- TensorFlow + Keras 实战 YOLO v3 目标检测图文并茂教程
运行步骤 1.从 YOLO 官网下载 YOLOv3 权重 wget https://pjreddie.com/media/files/yolov3.weights 下载过程如图: 2.转换 Darkn ...
- 【实战小项目】python开发自动化运维工具--批量操作主机
有很多开源自动化运维工具都很好用如ansible/salt stack等,完全不用重复造轮子.只不过,很多运维同学学习Python之后,苦于没小项目训练.本篇就演示用Python写一个批量操作主机的工 ...
- Django集成celery实战小项目
上一篇已经介绍了celery的基本知识,本篇以一个小项目为例,详细说明django框架如何集成celery进行开发. 本系列文章的开发环境: window 7 + python2.7 + pychar ...
随机推荐
- 有个数组 我现在需要把数组里面的值按照n个一组,赋予一个新的数组
有个数组 我现在需要把数组里面的值按照七个一组,赋予一个新的数组
- VC中edit控件使用
SetSel(start,end)作用:定制EDIT的所选择内容.间接地可以用于定位光标位置. 使用例子:EXP1:设置光标CEdit* pEdit=(CEdit*)GetDlgItem(I ...
- springmvc请求数据的流程。
验证了我说的,从model层中拿来的数据,不管什么类型,都是通过隐含模型,中转,放入request中的.除非你特意把这些数据放到session域中 流程含义解释:(来自网友)(1)HTTP请求到达we ...
- webBrowser 应用编程函数总结
/*============================说明部分================================= 实现一下函数需包含头文件 #include <Winine ...
- php-5.6.26源代码 - include_once、require_once、include、require、eval 的opcode处理器
# ZEND_INCLUDE_OR_EVAL_SPEC_CONST_HANDLER 实现在文件 php-\Zend\zend_vm_execute.h static int ZEND_FASTCALL ...
- 微信小程序播放视频
<view class="section tc"> <video id="myVideo" src="http://wxsnsdy. ...
- 接口API封装中常见的HTTP状态码
在进行后端接口API封装的过程中,需要考虑各种错误信息的输出.一般情况下,根据相应问题输出适合的HTTP状态码,可以方便前端快速定位错误,减少沟通成本. HTTP状态码有很多,每个都有对应的含义,下面 ...
- php 操作RabbitMQ
本文摘抄自:https://www.cnblogs.com/alin-qu/p/8312874.html php 操作RabbitMQ 基本流程图 如果exchange 没有绑定queue,则消息 ...
- 我是一个MySQL小白
我是一个MySQL小白 第一回早起装扮 “mysql,Oracle,SQL-SERVER你们三个 起床没?”,清晨七点多师父喊道. “师父,我(mysql)哪敢睡觉呀,我还在查询表呢,有客户的密码忘记 ...
- 计蒜客-----跳跃游戏(C语言)
/********************************************************给定一个非负整数数组,假定你的初始位置为数组第一个下标.数组中的每个元素代表你在那个位 ...