Description

The course of Software Design and Development Practice is objectionable. ZLC is facing a serious problem .There are many points in K-dimensional space .Given a point. ZLC need to find out the closest m points. Euclidean distance is used as the distance metric between two points. The Euclidean distance between points p and q is the length of the line segment connecting them.In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:
D(p,q)=D(q,p)=sqrt((q1-p1)^2+(q2-p2)^2+(q3-p3)^2…+(qn-pn)^2
Can you help him solve this problem?

软工学院的课程很讨厌!ZLC同志遇到了一个头疼的问题:在K维空间里面有许多的点,对于某些给定的点,ZLC需要找到和它最近的m个点。

(这里的距离指的是欧几里得距离:D(p, q) = D(q, p) =  sqrt((q1 - p1) ^ 2 + (q2 - p2) ^ 2 + (q3 - p3) ^ 2 + ... + (qn - pn) ^ 2)

ZLC要去打Dota,所以就麻烦你帮忙解决一下了……

【Input】

第一行,两个非负整数:点数n(1 <= n <= 50000),和维度数k(1 <= k <= 5)。
接下来的n行,每行k个整数,代表一个点的坐标。
接下来一个正整数:给定的询问数量t(1 <= t <= 10000)
下面2*t行:
  第一行,k个整数:给定点的坐标
  第二行:查询最近的m个点(1 <= m <= 10)

所有坐标的绝对值不超过10000。
有多组数据!

【Output】

对于每个询问,输出m+1行:
第一行:"the closest m points are:" m为查询中的m
接下来m行每行代表一个点,按照从近到远排序。

保证方案唯一,下面这种情况不会出现:
2 2
1 1
3 3
1
2 2
1

Input

In the
first line of the text file .there are two non-negative integers n and
K. They denote respectively: the number of points, 1 <= n <=
50000, and the number of Dimensions,1 <= K <= 5. In each of the
following n lines there is written k integers, representing the
coordinates of a point. This followed by a line with one positive
integer t, representing the number of queries,1 <= t <=10000.each
query contains two lines. The k integers in the first line represent the
given point. In the second line, there is one integer m, the number of
closest points you should find,1 <= m <=10. The absolute value of
all the coordinates will not be more than 10000.
There are multiple test cases. Process to end of file.

Output

For each query, output m+1 lines:
The first line saying :”the closest m points are:” where m is the number of the points.
The following m lines representing m points ,in accordance with the order from near to far
It is guaranteed that the answer can only be formed in one ways. The
distances from the given point to all the nearest m+1 points are
different. That means input like this:
2 2
1 1
3 3
1
2 2
1
will not exist.

Sample Input

3 2
1 1
1 3
3 4
2
2 3
2
2 3
1

Sample Output

the closest 2 points are:
1 3
3 4
the closest 1 points are:
1 3

Solution

还是K-D Tree模板,不过这个是真正的多维KDT,做的时候把原来的0/1扩展到多维就好了

查询m远的时候开个大根堆,当答案小于堆顶的时候就push进去,然后query内部稍微改一下

因为query的时候lans和rans忘了赋初值调了半天emmm……

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#include<algorithm>
#define N (50000+1000)
#define INF 1e16
using namespace std; struct P
{
long long dis,num;
bool operator < (const P &a) const {return dis<a.dis;}
}po;
long long n,k,D,t,Root,m,ans[N];
priority_queue<P>q; struct Node
{
long long Max[],Min[],d[],lson,rson;
bool operator < (const Node &a) const {return d[D]<a.d[D];}
}p[N],T; struct KDT
{
Node Tree[N];
long long sqr(long long x){return x*x;} void Update(long long now)
{
for (int i=;i<k; ++i)
{
long long ls=Tree[now].lson, rs=Tree[now].rson;
Tree[now].Max[i]=Tree[now].Min[i]=Tree[now].d[i];
if (ls)
{
Tree[now].Max[i]=max(Tree[now].Max[i],Tree[ls].Max[i]);
Tree[now].Min[i]=min(Tree[now].Min[i],Tree[ls].Min[i]);
}
if (rs)
{
Tree[now].Max[i]=max(Tree[now].Max[i],Tree[rs].Max[i]);
Tree[now].Min[i]=min(Tree[now].Min[i],Tree[rs].Min[i]);
}
}
}
long long Build(long long opt,long long l,long long r)
{
if (l>r) return ;
long long mid=(l+r)>>;
D=opt; nth_element(p+l,p+mid,p+r+);
Tree[mid]=p[mid];
Tree[mid].lson=Build((opt+)%k,l,mid-);
Tree[mid].rson=Build((opt+)%k,mid+,r);
Update(mid); return mid;
}
long long Get_min(long long now)
{
long long ans=;
for (int i=; i<k; ++i)
{
if (T.d[i]>Tree[now].Max[i]) ans+=sqr(T.d[i]-Tree[now].Max[i]);
if (T.d[i]<Tree[now].Min[i]) ans+=sqr(Tree[now].Min[i]-T.d[i]);
}
return ans;
}
void Query(int now)
{
long long ls=Tree[now].lson, rs=Tree[now].rson, lans=INF,rans=INF;
if (ls) lans=Get_min(ls);
if (rs) rans=Get_min(rs); long long dist=;
for (int i=; i<k; ++i)
dist+=sqr(Tree[now].d[i]-T.d[i]);
po.dis=dist; po.num=now;
if (dist<q.top().dis)
q.pop(),q.push(po); if (lans<rans)
{
if (lans<q.top().dis) Query(ls);
if (rans<q.top().dis) Query(rs);
}
else
{
if (rans<q.top().dis) Query(rs);
if (lans<q.top().dis) Query(ls);
}
} }KDT; int main()
{
while (scanf("%lld%lld",&n,&k)!=EOF)
{
for (int i=; i<=n;++i)
for (int j=; j<k; ++j)
scanf("%lld",&p[i].d[j]);
Root=KDT.Build(,,n); scanf("%lld",&t);
for (int i=; i<=t; ++i)
{
for (int j=; j<k; ++j)
scanf("%lld",&T.d[j]);
scanf("%lld",&m);
for (int i=; i<=m; ++i)
{
po.dis=INF; po.num=;
q.push(po);
}
KDT.Query(Root); for (int i=; i<=m; ++i)
ans[i]=q.top().num,q.pop();
printf("the closest %lld points are:\n",m);
for (int i=m; i>=; --i)
{
for (int j=; j<k; ++j)
printf("%lld ",p[ans[i]].d[j]);
printf("\n");
}
}
}
}

BZOJ3053:The Closest M Points(K-D Teee)的更多相关文章

  1. 【kd-tree】bzoj3053 The Closest M Points

    同p2626.由于K比较小,所以不必用堆. #include<cstdio> #include<cstring> #include<cmath> #include& ...

  2. BZOJ3053: The Closest M Points

    题解: 我们可以事先在堆里放入插入m个inf然后不断的比较当前值与堆首元素的大小,如果小于的话进入. 估计函数也可以随便写写... query的时候貌似不用保留dir... return 0写在 wh ...

  3. 【BZOJ 3053】The Closest M Points

    KDTree模板,在m维空间中找最近的k个点,用的是欧几里德距离. 理解了好久,昨晚始终不明白那些“估价函数”,后来才知道分情况讨论,≤k还是=k,在当前这一维度距离过线还是不过线,过线则要继续搜索另 ...

  4. BZOJ 3053 The Closest M Points

    [题目分析] 典型的KD-Tree例题,求k维空间中的最近点对,只需要在判断的过程中加上一个优先队列,就可以了. [代码] #include <cstdio> #include <c ...

  5. 【BZOJ】3053: The Closest M Points(kdtree)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3053 本来是1a的QAQ.... 没看到有多组数据啊.....斯巴达!!!!!!!!!!!!!!!! ...

  6. 【HDOJ】4347 The Closest M Points

    居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...

  7. bzoj 3053 HDU 4347 : The Closest M Points kd树

    bzoj 3053 HDU 4347 : The Closest M Points  kd树 题目大意:求k维空间内某点的前k近的点. 就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差 ...

  8. 数据结构(KD树):HDU 4347 The Closest M Points

    The Closest M Points Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Ot ...

  9. poj:4091:The Closest M Points

    poj:4091:The Closest M Points 题目 描写叙述 每到饭点,就又到了一日几度的小L纠结去哪吃饭的时候了.由于有太多太多好吃的地方能够去吃,而小L又比較懒不想走太远,所以小L会 ...

随机推荐

  1. jquery 去除字符串左右空格

    /*** 删除左右两端的空格*/String.prototype.trim=function(){return this.replace(/(^\s*)|(\s*$)/g, '');} 调用方式: v ...

  2. Oracle RAC集群搭建(二)-基础环境配置

    01,创建用户,用户组 [root@rac1 ~]# groupadd -g 501 oinstall [root@rac1 ~]# groupadd -g 502 dba [root@rac1 ~] ...

  3. pat1011. World Cup Betting (20)

    1011. World Cup Betting (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Wit ...

  4. nyoj 1205——简单问题——————【技巧题】

    简单问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 给你一个n*m的矩阵,其中的元素每一行从左到右按递增顺序排序,每一列从上到下按递增顺序排序,然后给你一些数x ...

  5. 如何用webgl(three.js)搭建一个3D库房,3D密集架,3D档案室,-第二课

    闲话少叙,我们接着第一课继续讲(http://www.cnblogs.com/yeyunfei/p/7899613.html),很久没有做技术分享了.很多人问第二课有没有,我也是抽空写一下第二课. 第 ...

  6. jqGrid随窗口大小变化自适应宽度

    $(function(){ $(window).resize(function(){ $("#jqgridID").setGridWidth($(window).width()); ...

  7. RocketMQ3.2.6安装部署及调用

    RocketMQ3.2.6安装部署及调用 1.RocketMQ部署架构 所有IP都是127.0.0.1,其中NameServer一个,Broker一个,Producer一个,Consumer一个 2. ...

  8. 正则表达式验证问题(用户名、密码、email、身份证

    实现的代码如下: <html> <head> <meta charset="UTF-8"> </head> <body> ...

  9. Jupyter Notebook(iPython)

    一.Jupyter Notebook介绍 1.什么是Jupyter Notebook Jupyter Notebook是基于网页的用于交互计算的应用程序.其可被应用于全过编码开发.文档编写.运行代码和 ...

  10. mysql三-1:理解存储引擎

    一.什么是存储引擎 mysql中建立的库===>文件夹 库中建立的表===>文件 生活中我们用来存储数据的文件有不同的类型,每种文件类型对应各自不同的处理机制:比如处理文本用txt类型,处 ...