题目大意:

一个由自然数组成的数列按下式定义:

对于i <= k:ai = bi

对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k

其中bj和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。

题解

首先显然我们可以构造一个矩阵递推\(a_i\)。

如果直接从m递推到n,会超时(我也没写过,不知道),我们在矩阵中加一维,记录\(s_i\),具体可以见代码

注意一个问题:减法取模时应该加成正数。因为这个WA了好几次。

代码

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
using namespace std;
const ll maxn = 20;
ll k, B[maxn], C[maxn], s[maxn];
ll m, n, p;
struct M {
ll n, m;
ll a[maxn][maxn];
} a, b;
M operator*(M a, M b) {
M c;
c.n = a.n;
c.m = b.m;
memset(c.a, 0, sizeof(c.a));
for (ll i = 1; i <= c.n; i++) {
for (ll j = 1; j <= c.m; j++) {
for (ll k = 1; k <= a.m; k++)
c.a[i][j] = (c.a[i][j] + (ull)(a.a[i][k] * b.a[k][j]) % p) % p;
}
}
return c;
}
M pow(M a, ll b) {
M ret;
ret.n = a.n;
ret.m = a.m;
memset(ret.a, 0, sizeof(ret.a));
for (ll i = 1; i <= ret.n; i++)
ret.a[i][i] = 1;
while (b) {
if (b & 1)
ret = ret * a;
a = a * a;
b >>= 1;
}
return ret;
}
void print(M x) {
for (ll i = 1; i <= x.n; i++) {
for (ll j = 1; j <= x.m; j++)
cout << x.a[i][j] << ' ';
cout << endl;
}
}
ll calc(ll x) {
M y = pow(a, x + 1);
// prll (y);
y = y * b;
return y.a[1][1];
}
int main() {
// freopen("input", "r", stdin);
scanf("%lld", &k);
a.n = k + 1;
a.m = k + 1;
b.n = k + 1;
b.m = 1;
s[0] = 0;
for (ll i = 1; i <= k; i++) {
scanf("%lld", &B[i]);
}
for (ll i = 1; i <= k; i++)
scanf("%lld", &C[i]);
scanf("%lld %lld %lld", &m, &n, &p);
for (ll i = 1; i <= k; i++)
s[i] = (B[i] + s[i - 1]) % p;
b.a[1][1] = s[k - 1];
for (ll i = 1; i <= k; i++)
b.a[i + 1][1] = B[k - i + 1];
a.a[1][1] = a.a[1][2] = 1;
for (ll i = 1; i <= k; i++)
a.a[2][i + 1] = C[i];
for (ll i = 1; i < k; i++)
a.a[i + 2][i + 1] = 1;
// a = a * b;
ll ans1, ans2;
// calc(1);
if (m - 1 > k)
ans1 = calc(m - 1 - k);
else
ans1 = s[m - 1];
if (n > k)
ans2 = calc(n - k);
else
ans2 = s[n];
printf("%lld\n", (ans2 - ans1 + p) % p);
return 0;
}

[bzoj3231][SDOI2008]递归数列——矩阵乘法的更多相关文章

  1. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  2. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  3. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  4. P2461 [SDOI2008]递归数列 矩阵乘法+构造

    还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...

  5. BZOJ3231: [Sdoi2008]递归数列

    BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...

  6. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  7. bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 裸矩阵乘法. 代码如下: #include<iostream> #incl ...

  8. BZOJ-3231 [SDOI2008]递归数列

    转成矩阵连乘后,矩阵快速幂加速解决. 一开始没把需要longlong的变量补全..而且没初始化2333 #include <cstdlib> #include <cstdio> ...

  9. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

随机推荐

  1. MySQL高可用之PXC安装部署

      Preface       Today,I'm gonna implement a PXC,Let's see the procedure.   Framework   Hostname IP P ...

  2. 【赛后补题】(HDU6223) Infinite Fraction Path {2017-ACM/ICPC Shenyang Onsite}

    场上第二条卡我队的题目. 题意与分析 按照题意能够生成一个有环的n个点图(每个点有个位数的权值).图上路过n个点显然能够生成一个n位数的序列.求一个最大序列. 这条题目显然是搜索,但是我队在场上(我负 ...

  3. npx 命令介绍

    这个是在 npmv5.2.0引入的一条命令(查看),引入这个命令的目的是为了提升开发者使用包内提供的命令行工具的体验. 为什么引入这个命令 举个例子,我们开发中要运行 parcel 命令来打包:par ...

  4. GBDT && XGBOOST

                                  GBDT && XGBOOST Outline Introduction GBDT Model XGBOOST Model ...

  5. PC(win10)上搭建 kubernetes + docker 集群环境

    最近kubernetes很火,加上我又在寻找适合快速搭建测试环境的方法,kubernetes的理念很适合用于测试环境的搭建. 因此在学习的过程中写下此教程(记录)以供回顾. 0x00 环境准备 0x0 ...

  6. BZOJ 4029 HEOI2015 定价 数位贪心

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4029 题意概述:对于一个数字的荒谬程度定义如下:删除其所有的后缀0,然后得到的数字长度为a ...

  7. POJ 2168 Joke with Turtles(DP)

    Description There is a famous joke-riddle for children: Three turtles are crawling along a road. One ...

  8. MongoDB Linux下的安装和启动

    1. 下载MongoDB,此处下载的版本是:mongodb-linux-i686-1.8.1.tgz.tar. http://fastdl.mongodb.org/linux/mongodb-linu ...

  9. 基于SDN的IP RAN网络虚拟化技术

    http://www.zte.com.cn/cndata/magazine/zte_technologies/2014/2014_4/magazine/201404/t20140421_422858. ...

  10. clone项目到本地

    clone项目到本地 1.然后在本地建立接受代码的文件夹,然后cd 到这个目录 (克隆版本库的时候,所使用的远程主机自动被git命名为origin.如果想用其他的主机名,需要用git clone命令的 ...