STROME --realtime & online parallel computing
Data Collections ---> Stream to Channel (as source input) ----> Parallel Computing---> Results (as source ouput) -----> To DB ( Presentation)
ISpout is the core interface for implementing spouts. A Spout is responsible for feeding messages into the topology for processing. For every tuple emitted by a spout, Storm will track the (potentially very large) DAG of tuples generated based on a tuple emitted by the spout. When Storm detects that every tuple in that DAG has been successfully processed, it will send an ack message to the Spout.
An IBolt represents a component that takes tuples as input and produces tuples as output. An IBolt can do everything from filtering to joining to functions to aggregations. It does not have to process a tuple immediately and may hold onto tuples to process later
The tuple is the main data structure in Storm.
A tuple is a named list of values, where each value can be any type.
Tuples are dynamically typed -- the types of the fields do not need to be declared.
Tuples have helper methods like getInteger and getString to get field values without having to cast the result. Storm needs to know how to serialize all the values in a tuple.
By default, Storm knows how to serialize the primitive types, strings, and byte arrays.
If you want to use another type, you'll need to implement and register a serializer for that type.
Integration With External Systems, and Other Libraries
- Apache Kafka Integration, New Kafka Consumer Integration
- Apache HBase Integration
- Apache HDFS Integration
- Apache Hive Integration
- Apache Solr Integration
- Apache Cassandra Integration
- Apache RocketMQ Integration
- JDBC Integration
- JMS Integration
- MQTT Integration
- Redis Integration
- Event Hubs Intergration
- Elasticsearch Integration
- Mongodb Integration
- OpenTSDB Integration
- Kinesis Integration
- Druid Integration
- PMML Integration
- Kestrel Integration
STROME --realtime & online parallel computing的更多相关文章
- Introduction to Parallel Computing
Copied From:https://computing.llnl.gov/tutorials/parallel_comp/ Author: Blaise Barney, Lawrence Live ...
- General mistakes in parallel computing
这是2013年写的一篇旧文,放在gegahost.net上面 http://raison.gegahost.net/?p=97 March 11, 2013 General mistakes in ...
- Method and apparatus for an atomic operation in a parallel computing environment
A method and apparatus for a atomic operation is described. A method comprises receiving a first pro ...
- Parallel Computing–Cannon算法 (MPI 实现)
原理不解释,直接上代码 代码中被注释的源程序可用于打印中间结果,检查运算是否正确. #include "mpi.h" #include <math.h> #includ ...
- Distributed and Parallel Computing
Omega Network Model
- Massively parallel supercomputer
A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures ba ...
- [译]何时使用 Parallel.ForEach,何时使用 PLINQ
原作者: Pamela Vagata, Parallel Computing Platform Group, Microsoft Corporation 原文pdf:http://download.c ...
- Notes of Principles of Parallel Programming - TODO
0.1 TopicNotes of Lin C., Snyder L.. Principles of Parallel Programming. Beijing: China Machine Pres ...
- Parallel.ForEach() 并行循环
现在的电脑几乎都是多核的,但在软件中并还没有跟上这个节奏,大多数软件还是采用传统的方式,并没有很好的发挥多核的优势. 微软的并行运算平台(Microsoft’s Parallel Computing ...
随机推荐
- 1、TensorFlow简介
参考:http://www.tensorfly.cn/tfdoc/get_started/basic_usage.html 1.用TensorFlow构造一个简单的线性拟合: # -*- coding ...
- Qt 学习之路 2(70):进程间通信
Qt 学习之路 2(70):进程间通信 豆子 2013年11月12日 Qt 学习之路 2 16条评论 上一章我们了解了有关进程的基本知识.我们将进程理解为相互独立的正在运行的程序.由于二者是相互独立的 ...
- Mac下安装配置Python2和Python3并相互切换使用 转
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014259820/article/details/81023224 安装Python2 Mac系统 ...
- 警告"System.Configuration.ConfigurationSettings.AppSettings”已过时,解决办法
解决办法: 直接把ConfigurationSettings写成ConfigurationManager,但是提示没有ConfigurationManager语句.
- C++_友元3-其他友元关系
友元和类的关系还可以更复杂. 举个例子,假设出现了交互式遥控器,交互式遥控器能够让您回答电视节目中的问题,如果回答错误,电视将在控制器上产生嗡嗡声. 这个例子的问题,可以使用新的友元关系来解决.我把它 ...
- 地牢逃脱----DFS搜索最优解
https://www.nowcoder.com/practice/0385945b7d834a99bc0010e67f892e38?tpId=85&tqId=29831&tPage= ...
- iptables 命令记录
安装 原理 基本命令 实践 脚本 1.安装 以centos 7为例子安装 yum install -q -y iptables-services配置 iptables [-t table] comma ...
- List<Type> 随机排序
public List<T> GetRandomList<T>(List<T> inputList){ //Copy to a array T[] copyArra ...
- PIE SDK反距离权重插值算法
1.算法功能简介 反距离权重 (IDW) 插值使用一组采样点的线性权重组合来确定像元值.权重是一种反距离函数.进行插值处理的表面应当是具有局部因变量的表面.此方法假定所映射的变量因受到与其采样位置 ...
- PIE SDK图层树右键菜单与命令绑定
1. 功能简介 上一节已经介绍过图层树如何和地图和制图关联,图层树右键菜单主要是基于TocControl控件进行对菜单节点进行控制,TocControl主要作用是显示当前加载的图层有哪些.采用什么 ...