Must-read papers on NRL/NE.

github: https://github.com/nate-russell/Network-Embedding-Resources

NRL: network representation learning. NE: network embedding.

Contributed by Cunchao Tu and Yuan Yao.

  1. DeepWalk: Online Learning of Social Representations. Bryan Perozzi, Rami Al-Rfou, Steven Skiena. KDD 2014. papercode

  2. Learning Latent Representations of Nodes for Classifying in Heterogeneous Social Networks. Yann Jacob, Ludovic Denoyer, Patrick Gallinar. WSDM 2014. paper

  3. Non-transitive Hashing with Latent Similarity Componets. Mingdong Ou, Peng Cui, Fei Wang, Jun Wang, Wenwu Zhu.KDD 2015. paper

  4. GraRep: Learning Graph Representations with Global Structural Information. Shaosheng Cao, Wei Lu, Qiongkai Xu.CIKM 2015. paper code

  5. LINE: Large-scale Information Network Embedding. Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Me. WWW 2015. paper code

  6. Network Representation Learning with Rich Text Information. Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, Edward Y. Chang. IJCAI 2015. paper code

  7. PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks. Jian Tang, Meng Qu, Qiaozhu Mei.KDD 2015. paper code

  8. Heterogeneous Network Embedding via Deep Architectures. Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, Thomas S. Huang. KDD 2015. paper

  9. Deep Neural Networks for Learning Graph Representations. Shaosheng Cao, Wei Lu, Xiongkai Xu. AAAI 2016. papercode

  10. Asymmetric Transitivity Preserving Graph Embedding. Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, Wenwu Zhu. KDD 2016. paper

  11. Revisiting Semi-supervised Learning with Graph Embeddings. Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov.ICML 2016. paper

  12. node2vec: Scalable Feature Learning for Networks. Aditya Grover, Jure Leskovec. KDD 2016. paper code

  13. Max-Margin DeepWalk: Discriminative Learning of Network Representation. Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, Maosong Sun. IJCAI 2016. paper code

  14. Structural Deep Network Embedding. Daixin Wang, Peng Cui, Wenwu Zhu. KDD 2016. paper

  15. Community Preserving Network Embedding. Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, Shiqiang Yang.AAAI 2017. paper

  16. Semi-supervised Classification with Graph Convolutional Networks. Thomas N. Kipf, Max Welling. ICLR 2017. papercode

  17. CANE: Context-Aware Network Embedding for Relation Modeling. Cunchao Tu, Han Liu, Zhiyuan Liu, Maosong Sun. ACL 2017. paper code

  18. Fast Network Embedding Enhancement via High Order Proximity Approximation. Cheng Yang, Maosong Sun, Zhiyuan Liu, Cunchao Tu. IJCAI 2017. paper code

  19. TransNet: Translation-Based Network Representation Learning for Social Relation Extraction. Cunchao Tu, Zhengyan Zhang, Zhiyuan Liu, Maosong Sun. IJCAI 2017. paper code

  20. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. Yuxiao Dong, Nitesh V. Chawla, Ananthram Swami. KDD 2017. paper code

  21. Learning from Labeled and Unlabeled Vertices in Networks. Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, Christian Böhm. KDD 2017.

  22. Unsupervised Feature Selection in Signed Social Networks. Kewei Cheng, Jundong Li, Huan Liu. KDD 2017. paper

  23. struc2vec: Learning Node Representations from Structural Identity. Leonardo F. R. Ribeiro, Pedro H. P. Saverese, Daniel R. Figueiredo. KDD 2017. paper code

  24. Inductive Representation Learning on Large Graphs. William L. Hamilton, Rex Ying, Jure Leskovec. Submitted to NIPS 2017. paper code

  25. Variation Autoencoder Based Network Representation Learning for Classification. Hang Li, Haozheng Wang, Zhenglu Yang, Masato Odagaki. ACL 2017. paper

network embedding 需读论文的更多相关文章

  1. Network Embedding 论文小览

    Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...

  2. [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding

    [论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...

  3. 论文阅读:Relation Structure-Aware Heterogeneous Information Network Embedding

    Relation Structure-Aware Heterogeneous Information Network Embedding(RHINE) (AAAI 2019) 本文结构 (1) 解决问 ...

  4. [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati

    [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...

  5. [论文阅读笔记] Community aware random walk for network embedding

    [论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...

  6. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  7. [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion

    [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...

  8. [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding

    [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...

  9. 论文解读(Line)《LINE: Large-scale Information Network Embedding》

    论文题目:<LINE: Large-scale Information Network Embedding>发表时间:  KDD 2015论文作者:  Jian Tang, Meng Qu ...

随机推荐

  1. JDK 5 ~ 10 新特性倾情整理!

    JDK 5 ~ 10 新特性倾情整理! 最近连 JDK11都在准备发布的路上了,大家都整明白了吗?也许现在大部分人还在用6-8,8的新特性都没用熟,9刚出不久,10-11就不用说了. 为了大家对JDK ...

  2. flask之werkzeug

    密码存储的主要形式: 明文存储:肉眼就可以识别,没有任何安全性. 加密存储:通过一定的变换形式,使得密码原文不易被识别. 密码加密的几类方式: 明文转码加密:BASE64, 7BIT等,这种方式只是个 ...

  3. python 安装 wxPtyhon (window)

    检查是否安装pip 打开cmd(全局安装的python)测试是否安装了pip 工具 以上是安装了pip , 执行下载并安装 wxPtyhon 第一种方法: 也可以使用其他的地址 官网地址 https: ...

  4. logstash根据配置文件启动时,报异常

    请查看你的配置文件中是否包含了特殊字符,通常,复制黏贴过来的配置文件,会带有特殊字符.这个很影响logstash的启动. linux中查看文件中的特殊字符方法: 使用cat方法 cat -A 文件名 ...

  5. 蓝桥-青蛙跳杯子(bfs)

    问题描述 X星球的流行宠物是青蛙,一般有两种颜色:白色和黑色. X星球的居民喜欢把它们放在一排茶杯里,这样可以观察它们跳来跳去. 如下图,有一排杯子,左边的一个是空着的,右边的杯子,每个里边有一只青蛙 ...

  6. 剑指offer——面试题15.1:判断一个数是否为2的整数次方

    #include"iostream" using namespace std; bool IsTwoPower(int n) { )&n); } int main() { ...

  7. 初用msui.js

    MSui,基于 Framework7 开发,组件功能使用Zepto库提供.定位轻量级的ui库 简单的使用MSui组件只需要引入所提供的CDN则可 <link rel="styleshe ...

  8. PIE SDK过滤

    1. 算法功能简介 过滤功能使用斑点分组方法来消除分类文件中被隔离的分类像元,用以解决分类图像中出现的孤岛问题. PIE SDK支持算法功能的执行,下面对过滤算法功能进行介绍. 2. 算法功能实现说明 ...

  9. (Frontend Newbie)Web简史

    前段时间在微博上看到有人问,前端这几年发展这么迅猛,各种新技术.新框架层出不穷,我们究竟怎么学习这些新技术才能跟得上脚步,毕竟精力有限,逐个学习不现实.个人认为,没有太大的必要去追逐那些新潮的技术.原 ...

  10. 8086键盘输入实验——《x86汇编语言:从实模式到保护模式》读书笔记07

    1.BIOS中断 我们可以为所有中断类型自定义中断处理过程,包括内部中断.硬件中断和软中断. BIOS中断,又称BIOS功能调用,主要是为了方便地使用最基本的硬件访问功能.通常,为了区分针对同一硬件的 ...