还是这本书上的内容,不过我看演化计算这一章是倒着看的,这里练习的算法正好和书中介绍的顺序是相反的。

演化策略是最古老的的演化算法之一,和上一篇DE算法类似,都是基于种群的随机演化产生最优解的算法。

算法步骤如下:

1.设定种群个体数和需要迭代的次数。
2.选择父代中的个体按照公式z1=sqrt(-2*ln(u1))*sin(2*pi*u2)*m,z2=sqrt(-2*ln(u1))*cos(2*pi*u2)*m进行演化。

这里u1,u2都是随机值,m是控制因子,演化次数越多m,m越小,父代通过与z1,z2相加得到后代。

3.计算后代的适应性。

4.选择后代中最优的适应性作为全局最优适应性。

其实整个过程和DE非常类似。过程都是随机变异,求适应性,再找最优。

我还试着将z1和z2横设为1,竟也能得到非常好的解。

算法结果如下:

matlab代码如下:

main.m

clear all;close all;clc;

[x y]=meshgrid(-:,-:);
sigma=;
img = (/(*pi*sigma^))*exp(-(x.^+y.^)/(*sigma^)); %目标函数,高斯函数
mesh(img);
hold on;
n=; %种群个体的数量
iter=; %迭代次数 %初始化种群,定义结构体
par=struct([]);
for i=:n
par(i).x=-+*rand(); %个体的x特征在[- ]随机初始化
par(i).y=-+*rand(); %个体的y特征在[- ]随机初始化
par(i).fit=compute_fit(par(i)); %个体在[x,y]处的适应度
end
par_best=par(); %初始化种群中最佳个体 for k=:iter %迭代次数
plot3(par_best.x+,par_best.y+,par_best.fit,'g*'); %画出最佳个体的位置,+为相对偏移
[par par_best]=select_and_recombin(par,par_best,n,k,iter); %差异演化函数
end

select_and_recombin.m

function [next_par par_best]=select_and_recombin(par,par_best,n,k,iter)
mul=(iter-k)/iter; %限制进化因子,代数越高变异越小
next_par=par; %新种群
for i=:n %产生变异随机数
u1=rand();
u2=rand();
z1=sqrt(-*log(u1))*sin(*pi*u2)*mul;
z2=sqrt(-*log(u1))*cos(*pi*u2)*mul; %变异
next_par(i).x=par(i).x+z1;
next_par(i).y=par(i).y+z2; %计算变异后个体的适应度
next_par(i).fit=compute_fit(next_par(i));
%如果新个体没有变异前个体适应度高,新个体还原为旧个体
if par(i).fit>next_par(i).fit
next_par(i)=par(i);
end
%如果变异后适应度高于种群最高适应个体,则更新种群适应度最高个体
if next_par(i).fit>par_best.fit
par_best=next_par(i);
end
end
end

compute_fit.m

function re=compute_fit(par)
x=par.x;
y=par.y;
sigma=;
if x<- || x> || y<- || y>
re=; %超出范围适应度为0
else %否则适应度按目标函数求解
re=(/(*pi*sigma^))*exp(-(x.^+y.^)/(*sigma^));
end
end

matlab练习程序(演化策略ES)的更多相关文章

  1. matlab练习程序(SUSAN检测)

    matlab练习程序(SUSAN检测) SUSAN算子既可以检测角点也可以检测边缘,不过角点似乎比不过harris,边缘似乎比不过Canny.不过思想还是有点意思的. 主要思想就是:首先做一个和原图像 ...

  2. (转)matlab练习程序(HOG方向梯度直方图)

    matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...

  3. matlab练习程序(差异演化DE)

    这两天在看M.Tim Jones的<人工智能>,书中不只介绍原理,而且都有相应的c代码实现. 虽然代码不完全,不过缺少的部分完全可以自己补完. 差异演化和昨天实现的PSO很类似,都属于优化 ...

  4. matlab练习程序(简单多边形的核)

    还是计算几何, 多边形的核可以这样理解:这个核为原多边形内部的一个多边形,站在这个叫核的多边形中,我们能看到原多边形的任何一个位置. 算法步骤如下: 1.根据原多边形最大和最小的x,y初始化核多边形, ...

  5. matlab示例程序--Motion-Based Multiple Object Tracking--卡尔曼多目标跟踪程序--解读

    静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:h ...

  6. matlab练习程序(透视投影,把lena贴到billboard上)

    本练习程序是受到了这个老外博文的启发,感觉挺有意思,就尝试了一下.他用的是opencv,我这里用的是matlab. 过去写过透视投影,当时是用来做倾斜校正的,这次同样用到了透视投影,不过更有意思,是将 ...

  7. matlab练习程序(多圆交点)

    最近总是对计算几何方面的程序比较感兴趣. 多圆求交点,要先对圆两两求交点. 有交点的圆分为相切圆和相交圆. 相切圆求法: 1.根据两圆心求直线 2.求公共弦直线方程 3.求两直线交点即两圆切点. 相交 ...

  8. matlab练习程序(矩形变换为单连通形状)

    变换使用的模板必须是单连通的,而且模板中心必须在模板内,如果在模板中打个结或是月牙形,这里的程序就处理不了了. 虽然非单连通模板也有办法处理,不过不是这里要讨论的. 这里用到的方法和矩形变换为圆那片文 ...

  9. matlab练习程序(渲染三原色)

    这里我用的空间是x向右为正,y向下为正,z向屏幕里面为正.相当于标准右手系绕x轴旋转了180度. 将三个点光源放在 r = [0.3,0,0.5];g = [0.3,-0.5*cos(pi/6),-0 ...

随机推荐

  1. day--43 HTML标签和CSS基本小结

    HTML标签和CSS基本小结一:常用标签 01:块标签 p,h1--h6 ,hr ,div 02:内联标签 b,i,u,s 小提示:块标签可以嵌套内置元素或者某些块级元素,但内联元素不能包含块级元素 ...

  2. spring boot 自定义静态资源 位置..

    upload-path: E:/upload # 上传文件夹. upload-key: 72b3158c-a0f3-11e8-98d0-529269fb1459 # 定义上传的 key . sprin ...

  3. GCD(最大公约数)和LCM(最小公倍数)的求法

    GCD(最大公约数) (1)辗转相除法(欧几里得算法)(常用) 将两个数a, b相除,如果余数c不等于0,就把b的值给a,c的值给b,直到c等于0,此时最大公约数就是b (2)更相减损术 将两个书中较 ...

  4. LeetCode215. 数组中的第K个最大元素

    215. 数组中的第K个最大元素 问题描述 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 示例 1: 输入: [3 ...

  5. JavaScript 中this 初步理解笔记

    Javascript中函数中的this通常指向的是函数的拥有者,这个拥有者就是上下文执行对象:另外一点需要注意,this只能在javascript函数内部使用.

  6. P1353_[USACO08JAN]跑步Running 我死了。。。

    我死了...被绿题虐...看来我的水平有待提高...QWQ 好吧,就是跑步的时候只能从跑步的状态转移过来 休息的时候可以从上一次休息时转移过来,也可以从某次跑步的时转移过来,需要枚举从哪一个状态转移来 ...

  7. POJ_1733 Parity game 【并查集+离散化】

    一.题面 POJ1733 二.分析 该题与之前做过的带权并查集的唯一区别就是数组开不下.所以需要用离散化的思想,只取那些有用的点来解决该问题. 离散化其实就是把这些所有用到的点收集后,去重,再排一下序 ...

  8. SGU - 507 启发式合并维护平衡树信息

    题意:给定一颗树,每个叶子节点\(u\)都有权值\(val[u]\),求每个非叶子节点子树的最小叶子距离,若该子树只有一个叶子节点,输出INF 貌似本来是一道树分治(并不会)的题目,然而可以利用平衡树 ...

  9. 关于jstl taglib的错误 Can not find the tag library descriptor for “http://java.sun.com/jstl/core”

    在查了N个帖子之后,决定记录一下关于jstl taglib的配置方法. 首先我遇到的错误是: Can not find the tag library descriptor for "htt ...

  10. docker run、commit报错

    1.docker commit 报错 Error response from daemon: devmapper: Error mounting '/dev/mapper/docker-253:2-1 ...