推荐一道联赛练习题。

题目分析:

你考虑进入一个子树就可能上不来了,如果上得来的话就把能上来的全捡完然后走一个上不来的,所以这就是个基本的DP套路。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ; int n,k,fa[maxn];
vector <int> g[maxn]; int dep[maxn],minn[maxn]; int f[maxn],d[maxn]; void read(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) {scanf("%d",&fa[i]);g[fa[i]].push_back(i);}
} void dfs(int now,int dp){
dep[now] = dp;
if(g[now].size() == ){minn[now] = dp; return;}
minn[now] = 1e8;
for(int i=;i<g[now].size();i++){
dfs(g[now][i],dp+);
minn[now] = min(minn[now],minn[g[now][i]]);
}
} void dfs2(int now){
if(g[now].size() == ){
f[now] = d[now] = ;
return;
}
for(int i=;i<g[now].size();i++) dfs2(g[now][i]);
for(int i=;i<g[now].size();i++)
if(minn[g[now][i]] - dep[now] <= k) d[now] += d[g[now][i]];
for(int i=;i<g[now].size();i++){
if(minn[g[now][i]] - dep[now] <= k)
f[now] = max(f[now],d[now]-d[g[now][i]]+f[g[now][i]]);
else f[now] = max(f[now],d[now]+f[g[now][i]]);
}
} void work(){
dfs(,);
dfs2(); // dp
printf("%d\n",f[]);
} int main(){
read();
work();
return ;
}

Codeforces1065F Up and Down the Tree 【树形DP】的更多相关文章

  1. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  2. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  3. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  4. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  5. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  6. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  7. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  8. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

  9. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

  10. [Ccodeforces 736C] Ostap and Tree - 树形DP

    给定一个n个点的树,把其中一些点涂成黑色,使得对于每个点,其最近的黑点的距离不超过K. 树形DP. 设置状态f[i][j]: 当j <= K时: 合法状态,表示i的子树中到根的最近黑点距离为j的 ...

随机推荐

  1. 分享一个公众号h5裂变吸粉源码工具

    这次我是分享我本人制作的一个恶搞程序,说白了就是一个公众号裂变吸粉工具,市面上有很多引流方法,例如最常见的就是色流,哈哈,今天我跟大家分享的方法是有趣的,好玩的,恶搞的.这个程序上线一天已经收获了61 ...

  2. JS 异步系列 —— Promise 札记

    Promise 研究 Promise 的动机大体有以下几点: 对其 api 的不熟悉以及对实现机制的好奇; 很多库(比如 fetch)是基于 Promise 封装的,那么要了解这些库的前置条件得先熟悉 ...

  3. 常用yum操作命令

    1.yum repolist 获取当前系统有效的repolist,如下图 2.yum list,列出所有可安装的软件包 获取当前有效repolist中所能安装的所有rpm包列表,(很长,慎重),可以结 ...

  4. 接口自动化框架(Pytest+request+Allure)

    前言: 接口自动化是指模拟程序接口层面的自动化,由于接口不易变更,维护成本更小,所以深受各大公司的喜爱. 接口自动化包含2个部分,功能性的接口自动化测试和并发接口自动化测试. 本次文章着重介绍第一种, ...

  5. Technical Development Guide---for Google

    Technical Development Guide This guide provides tips and resources to help you develop your technica ...

  6. 帮助小白,最新版JDK的安装与环境变量配置(Win 10系统)

    学习JAVA,必须首先安装一下JDK(java development kit java开发工具包),之后再配置环境变量就可以开始使用JAVA了. 一,安装JDK 1,可以选择到官网下载最新版本的JD ...

  7. 运行Maven项目时出现invalid LOC header (bad signature)错误,Tomcat不能正常启动

    作为Maven小白,今天这问题困扰了我好久,经过多次在网上查询,终于找到了原因.明明一个小问题却耗费很多时间,着实不应该,所以必须记录一下. 报错信息如下: 对话框: 控制台: <span st ...

  8. Debian搭建WordPress

    环境配置 可以使用apt-get快速安装mysql,php5:我是用源码手动安装apache服务器的.安装完mysql后,最好将字符编码设置为utf8的. 接下来就是mysql,apache,php5 ...

  9. linux系统下MySQL表名区分大小写问题

    linux系统下MySQL表名区分大小写问题 https://www.cnblogs.com/jun1019/p/7073227.html [mysqld] lower_case_table_name ...

  10. Mongo安装与使用

    MongoDB[1]  是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. mongoDB MongoDB[2]  是一个介于关系数据库和非关系数 ...