LCA

题目要求找离三个点最近的点,我们先看两个点的情况,自然是找LCA,那么三个点的时候是否与LCA有关呢?

显然,离三个点最近的点一定是在这三个点联通的简单路径上。

可以简单证明一下,假设某个点离a,b,c三个点最近且不在联通这三个点的简单路径上,那么有a,b,c中有两个点一定会经过某个点才能来到该点,换句话说,就是有两个人都要多走一段距离,那为什么不把两个人多走的距离换成让另外一个人走呢?这样显然更优。

而且我们的候选点一定在某两个点的LCA上,同样可以假设改点不在LCA上,那么也可以假设成两个人多走的距离用一个人走来替换,这样我们来到的点又变成了LCA。

再有三个点中每两个点的LCA有三对,必定有两对会重合(三个点的路径只会有两个交点),我们可以发现前面描述的两个点就是这两个不同的LCA。

因此我们的最优点就在不被重合的那个LCA上。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 500005;
int n, m, cnt, t, head[N], depth[N], p[N][20];
struct Edge{ int v, next; }edge[N<<1]; void addEdge(int a, int b){
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
} void dfs(int s, int fa){
depth[s] = depth[fa] + 1;
p[s][0] = fa;
for(int i = 1; i <= t; i ++) p[s][i] = p[p[s][i - 1]][i - 1];
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs(u, s);
}
} int lca(int x, int y){
if(depth[x] < depth[y]) swap(x, y);
for(int i = t; i >= 0; i --){
if(depth[p[x][i]] >= depth[y]) x = p[x][i];
}
if(x == y) return y;
for(int i = t; i >= 0; i --){
if(p[x][i] != p[y][i]) x = p[x][i], y = p[y][i];
}
return p[y][0];
} int main(){ full(head, -1);
n = read(), m = read();
t = (int)(log(n) / log(2)) + 1;
for(int i = 0; i < n - 1; i ++){
int u = read(), v = read();
addEdge(u, v), addEdge(v, u);
}
depth[0] = -1, dfs(1, 0);
while(m --){
int a = read(), b = read(), c = read();
int x = lca(a, b), y = lca(b, c), z = lca(a, c);
int tmp = 0;
if(x == y) tmp = z; else if(x == z) tmp = y; else if(y == z) tmp = x;
printf("%d %d\n", tmp, depth[a] + depth[b] + depth[c] - depth[x] - depth[y] - depth[z]);
}
return 0;
}

洛谷P4281 紧急集合 / 聚会的更多相关文章

  1. 【题解】洛谷P4281 [AHOI2008] 紧急集合(求三个点LCA)

    洛谷P4281:https://www.luogu.org/problemnew/show/P4281 思路 答案所在的点必定是三个人所在点之间路径上的一点 本蒟蒻一开始的想法是:先求出2个点之间的L ...

  2. 洛谷 P4281 [AHOI2008] 紧急集合 题解

    挺好的一道题,本身不难,就把求两个点的LCA变为求三个点两两求LCA,不重合的点才是最优解.值得一提的是,最后对答案的处理运用差分的思想:假设两点 一点深度为d1,另一点 深度为d2,它们LCA深度为 ...

  3. 洛谷 P1293 班级聚会

    P1293 班级聚会 题目描述 毕业25年以后,我们的主人公开始准备同学聚会.打了无数电话后他终于搞到了所有同学的地址.他们有些人仍在本城市,但大多数人分散在其他的城市.不过,他发现一个巧合,所有地址 ...

  4. 洛谷P4281 紧急会议

    传送门啦 思路: $ Lca $ 这个题要求这个显而易见吧.但是难就难在怎么在树上利用 $ Lca $ 去解决三个点的问题. 首先明确三个点两两的 三个 $ Lca $ 中有一对是相等的,我们也会发现 ...

  5. 洛谷P3964松鼠聚会

    题目 题意:求最小的从某一个点到其余点的切比雪夫距离和. 将一个图中的\((x,y)\)坐标转到新坐标\((x+y,x-y)\)后,图中的曼哈顿距离就是新图中的切比雪夫距离, 证明:分类讨论, 1.\ ...

  6. P4281 [AHOI2008]紧急集合 / 聚会

    P4281 [AHOI2008]紧急集合 / 聚会 lca 题意:求3个点的lca,以及3个点与lca的距离之和. 性质:设点q1,q2,q3 两点之间的lca t1=lca(q1,q2) t2=lc ...

  7. 「AHOI2008」「LuoguP4281」紧急集合 / 聚会(LCA

    题目描述 欢乐岛上有个非常好玩的游戏,叫做“紧急集合”.在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要 ...

  8. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  9. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

随机推荐

  1. webpack 中版本兼容性问题错误总结

    一定不要运行npm i  XXX  -g(-d) 一定要指定版本,尽量低版本,也不最新版本,会导致不兼容和指令不一样的问题. 1.安装webpack-dev-server 报错,说需要webpack- ...

  2. LeetCode 965. Univalued Binary Tree

    A binary tree is univalued if every node in the tree has the same value. Return true if and only if ...

  3. SQL Server 使用 Merge 关键字进行表数据同步

    简介 Merge关键字是一个神奇的DML关键字.它在SQL Server 2008被引入,它能将Insert,Update,Delete简单的并为一句.MSDN对于Merge的解释非常的短小精悍:”根 ...

  4. 剑指offer--4.重建二叉树

    题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2, ...

  5. Method not found: !!0[] System.Array.Empty()错误

    最近由于公司项目需要将之前支持的TLS1.0改成更安全的TLS1.2,而公司现有项目都是老系统,有的是.NET FrameWork 4.0,有的是.NET FrameWork3.5,但是TLS1.2默 ...

  6. win8.1系统下安装ubuntu实现双系统实践教程

    寒假闲来无事,一程序猿哥们给发了一个linux的shell编程指南,看了几张感觉不错.于是装一个试试. 没想到一装才知道了那么的问题. 下面开始: step 1: 软件准备:Ubuntu 系统镜像,这 ...

  7. matplotlib 入门之Sample plots in Matplotlib

    文章目录 Line Plot One figure, a set of subplots Image 展示图片 展示二元正态分布 A sample image Interpolating images ...

  8. 开发工程中遇到的BUG

    Xcode7自带Git创建的项目"Couldn’t communicate with a helper application" git xcode7 zhunjiee 2015年 ...

  9. semantic-ui 分割线

    分割线即原生html中的<hr>标签.不过semantic-ui中将<hr>美化了一下下. 1.基础分割线 需要注意的是分割线只能使用div标签和p标签,不能使用span标签. ...

  10. css实现三栏自适应布局(两边固定,中间自适应)以及优缺点

    方法一:绝对定位(absolute + margin) 原理:给左右两边的元素设置absolute,这样左右两边的元素脱离标准文档流的控制,中间的元素自然会上来,然后给中间的元素设置margin留出左 ...