附录之前总结的一个例子:

http://www.cnblogs.com/DreamDrive/p/7398455.html

另外两个有价值的博文:

http://www.cnblogs.com/xuxm2007/archive/2011/09/03/2165805.html

http://blog.csdn.net/heyutao007/article/details/5890103

一.MR的二次排序的需求说明

在mapreduce操作时,shuffle阶段会多次根据key值排序。但是在shuffle分组后,相同key值的values序列的顺序是不确定的(如下图)。如果想要此时value值也是排序好的,这种需求就是二次排序。

二.测试的文件数据

a 1
a 5
a 7
a 9
b 3
b 8
b 10

三.未经过二次排序的输出结果

a    9
a 7
a 5
a 1
b 10
b 8
b 3

四.第一种实现思路

直接在reduce端对分组后的values进行排序。

reduce关键代码

 @Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException { List<Integer> valuesList = new ArrayList<Integer>(); // 取出value
for(IntWritable value : values) {
valuesList.add(value.get());
}
// 进行排序
Collections.sort(valuesList); for(Integer value : valuesList) {
context.write(key, new IntWritable(value));
} }

输出结果:

a    1
a 5
a 7
a 9
b 3
b 8
b 10

很容易发现,这样把排序工作都放到reduce端完成,当values序列长度非常大的时候,会对CPU和内存造成极大的负载。

注意的地方(容易被“坑”)

在reduce端对values进行迭代的时候,不要直接存储value值或者key值,因为reduce方法会反复执行多次,但key和value相关的对象只有两个,reduce会反复重用这两个对象。需要用相应的数据类型.get()取出后再存储。

五.第二种实现思路

将map端输出的<key,value>中的key和value组合成一个新的key(称为newKey),value值不变。这里就变成<(key,value),value>,在针对newKey排序的时候,如果key相同,就再对value进行排序。

需要自定义的地方
  1.自定义数据类型实现组合key
    实现方式:继承WritableComparable
  2.自定义partioner,形成newKey后保持分区规则任然按照key进行。保证不打乱原来的分区。
    实现方式:继承partitioner
  3.自定义分组,保持分组规则任然按照key进行。不打乱原来的分组
    实现方式:继承RawComparator
自定义数据类型关键代码

 import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable; public class PairWritable implements WritableComparable<PairWritable> {
// 组合key
private String first;
private int second; public PairWritable() {
} public PairWritable(String first, int second) {
this.set(first, second);
} /**
* 方便设置字段
*/
public void set(String first, int second) {
this.first = first;
this.second = second;
} /**
* 反序列化
*/
@Override
public void readFields(DataInput arg0) throws IOException {
this.first = arg0.readUTF();
this.second = arg0.readInt();
}
/**
* 序列化
*/
@Override
public void write(DataOutput arg0) throws IOException {
arg0.writeUTF(first);
arg0.writeInt(second);
} /*
* 重写比较器
*/
public int compareTo(PairWritable o) {
int comp = this.first.compareTo(o.first); if(comp != 0) {
return comp;
} else { // 若第一个字段相等,则比较第二个字段
return Integer.valueOf(this.second).compareTo(
Integer.valueOf(o.getSecond()));
}
} public int getSecond() {
return second;
}
public void setSecond(int second) {
this.second = second;
}
public String getFirst() {
return first;
}
public void setFirst(String first) {
this.first = first;
}

自定义分区规则

 import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Partitioner; public class SecondPartitioner extends Partitioner<PairWritable, IntWritable> { @Override
public int getPartition(PairWritable key, IntWritable value, int numPartitions) {
/*
* 默认的实现 (key.hashCode() & Integer.MAX_VALUE) % numPartitions
* 让key中first字段作为分区依据
*/
return (key.getFirst().hashCode() & Integer.MAX_VALUE) % numPartitions;
}
}

自定义分组比较器

 import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.WritableComparator; public class SecondGroupComparator implements RawComparator<PairWritable> { /*
* 对象比较
*/
public int compare(PairWritable o1, PairWritable o2) {
return o1.getFirst().compareTo(o2.getFirst());
} /*
* 字节比较
* arg0,arg3为要比较的两个字节数组
* arg1,arg2表示第一个字节数组要进行比较的收尾位置,arg4,arg5表示第二个
* 从第一个字节比到组合key中second的前一个字节,因为second为int型,所以长度为4
*/
public int compare(byte[] arg0, int arg1, int arg2, byte[] arg3, int arg4, int arg5) {
return WritableComparator.compareBytes(arg0, 0, arg2-4, arg3, 0, arg5-4);
}

map关键代码

 private PairWritable mapOutKey = new PairWritable();
private IntWritable mapOutValue = new IntWritable();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String lineValue = value.toString();
String[] strs = lineValue.split("\t"); //设置组合key和value ==> <(key,value),value>
mapOutKey.set(strs[0], Integer.valueOf(strs[1]));
mapOutValue.set(Integer.valueOf(strs[1])); context.write(mapOutKey, mapOutValue);
}

reduce关键代码

 private Text outPutKey = new Text();
public void reduce(PairWritable key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
//迭代输出
for(IntWritable value : values) {
outPutKey.set(key.getFirst());
context.write(outPutKey, value);
} }

输出结果:

a    1
a 5
a 7
a 9
b 3
b 8
b 10

原理:

在map阶段:

使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordReder的实现。

本例子中使用的是TextInputFormat,他提供的RecordReder会将文本的一行的行号作为key,这一行的文本作为value。这就是自定义Map的输入是<LongWritable, Text>的原因。

然后调用自定义Map的map方法,将一个个<LongWritable, Text>对输入给Map的map方法。注意输出应该符合自定义Map中定义的输出<IntPair, IntWritable>。最终是生成一个List<IntPair, IntWritable>。

在map阶段的最后,会先调用job.setPartitionerClass对这个List进行分区,每个分区映射到一个reducer。每个分区内又调用job.setSortComparatorClass设置的key比较函数类排序。

可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass设置key比较函数类,则使用key的实现的compareTo方法。

在reduce阶段:

reducer接收到所有映射到这个reducer的map输出后,也是会调用job.setSortComparatorClass设置的key比较函数类对所有数据对排序。

然后开始构造一个key对应的value迭代器。这时就要用到分组,使用jobjob.setGroupingComparatorClass设置的分组函数类。

只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。

最后就是进入Reducer的reduce方法,reduce方法的输入是所有的(key和它的value迭代器)。同样注意输入与输出的类型必须与自定义的Reducer中声明的一致。

MapReduce的二次排序的更多相关文章

  1. MapReduce自定义二次排序流程

    每一条记录开始是进入到map函数进行处理,处理完了之后立马就入自定义分区函数中对其进行分区,当所有输入数据经过map函数和分区函数处理完之后,就调用自定义二次排序函数对其进行排序. MapReduce ...

  2. Mapreduce实例--二次排序

    前言部分: 在Map阶段,使用job.setInputFormatClass定义的InputFormat将输入的数据集分割成小数据块splites,同时InputFormat提供一个RecordRed ...

  3. MapReduce二次排序

    默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...

  4. Hadoop MapReduce 二次排序原理及其应用

    关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...

  5. MapReduce 二次排序

    默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...

  6. Hadoop Mapreduce分区、分组、二次排序过程详解[转]

    原文地址:Hadoop Mapreduce分区.分组.二次排序过程详解[转]作者: 徐海蛟 教学用途 1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2) ...

  7. Hadoop.2.x_高级应用_二次排序及MapReduce端join

    一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 == ...

  8. Hadoop学习笔记: MapReduce二次排序

    本文给出一个实现MapReduce二次排序的例子 package SortTest; import java.io.DataInput; import java.io.DataOutput; impo ...

  9. (转)MapReduce二次排序

    一.概述 MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求 ...

随机推荐

  1. P2146 [NOI2015]软件包管理器

    题目链接:https://www.luogu.org/problemnew/show/P2146 题目描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安 ...

  2. IntelliJ隐藏特定后缀文件

    preference-

  3. ASP.NET Core使用EntityFrameworkCore CodeFrist

    1,安装环境: 如果是VS2015,确保已经升级至 update3或以上 .net core sdk (https://www.microsoft.com/net/download/core) vs2 ...

  4. [C#.Net]Window服务调用外部程序

    最近遇到要做回传服务内增加开关,可以自定义运行一些脚本已方便收集PC状态,发现Bat始终无法运行,上网找了半天才发现和Session0有关,也就是程序有不同级别的访问权限,Vista以上版本为了安全因 ...

  5. vs C++ scanf 不安全

    项目->属性-> c/c++->预处理器->预处理器定义->加入下面这句: _CRT_SECURE_NO_DEPRECATE

  6. Particle Filters

    |—粒子滤波原理 |—基础代码的建立—|—前进 |                               |—转弯 |                               |—噪音(误差 ...

  7. 浮点数运算结果不精确,以及用String来构造BigDecimal进行浮点数精确计算

    1.浮点数运算结果不精确 先看如下代码 System.out.println(1.0 - 0.8); System.out.println(0.2 + 0.1); System.out.println ...

  8. python学习,excel操作之xlrd模块常用操作

    import xlrd ##工作表## #打开excel f = xlrd.open_workbook("test.xlsx") file = f.sheet_by_name(&q ...

  9. vscode调试golang环境搭建及配置

    准备VSCode 在官网下载最新版的VSCode: 安装Golang插件 打开扩展面板 VSCode->查看->扩展 找到Go插件 在搜索框里输入Go, 找到第二行写有 Rich Go l ...

  10. hive -help hive命令行执行sql参数

    在shell命令行执行 hive -help 结果如下: -d,--define <key=value> Variable substitution to apply to Hive co ...