HDU5117 Fluorescent 期望 计数 状压dp 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/HDU5117.html
题目传送门 - HDU5117
题意
$T$ 组数据。
给你 $n$ 盏灯 ,$m$ 个开关,每一个开关对应的控制一些灯。所有可以控制某盏灯的开关被按了奇数次,那么这盏灯最终是亮着的,否则是不亮的。
现在每一个开关都可以选择按或者不按。我们称对于所有开关都做出 按或者不按 的一种选择 为一种 方案。一种方案的价值是其最终情况下灯数 $x$ 的三次方,即 $x^3$ 。
求所有方案的价值和。答案对 $10^9+7$ 取模。
$n,m\leq 50$
题解
这题的做法真 妙 。
我们设一个方案的最终结果中,第 $i$ 栈灯的亮暗情况为 $x_i$ ,其中 $x_i=0$ 表示暗。
那么这个方案的价值显然为:
$$(\sum_{i=1}^n x_i)^3 = \sum_{i,j,k\in[1,n]}x_ix_jx_k $$
于是我们考虑对于每一个 $(i,j,k)$ ,求一下他对于最后答案的贡献。然后全部加起来。
那么这个贡献怎么求呢?
我们考虑状压dp,令 $dp_{i,j}$ 表示已经处理了前 $i$ 个灯,当前三盏灯亮暗状态为 $j$ 的贡献和,那么转移显然很 simple 。这样 $dp_{i,(亮,亮,亮)}$ 显然就是当前贡献。
时间复杂度 $O(Tn^4)$ 。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=55,mod=1e9+7;
int T,n,m,dp[N][8];
LL a[N];
int main(){
scanf("%d",&T);
int Case=0;
while (T--){
scanf("%d%d",&n,&m);
memset(a,0,sizeof a);
for (int i=1,s,x;i<=m;i++){
scanf("%d",&s);
while (s--)
scanf("%d",&x),a[i]|=1LL<<x;
}
int ans=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
for (int k=1;k<=n;k++){
memset(dp,0,sizeof dp);
dp[0][0]=1;
for (int t=1;t<=m;t++){
int x=((a[t]>>i&1)<<2)|((a[t]>>j&1)<<1)|(a[t]>>k&1);
for (int p=0;p<8;p++){
dp[t][p]=(dp[t][p]+dp[t-1][p])%mod;
dp[t][p^x]=(dp[t][p^x]+dp[t-1][p])%mod;
}
}
ans=(ans+dp[m][7])%mod;
}
printf("Case #%d: %d\n",++Case,ans);
}
return 0;
}
HDU5117 Fluorescent 期望 计数 状压dp 动态规划的更多相关文章
- [BZOJ1494][NOI2007]生成树计数 状压dp 并查集
1494: [NOI2007]生成树计数 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 793 Solved: 451[Submit][Status][ ...
- LightOJ - 1287 Where to Run —— 期望、状压DP
题目链接:https://vjudge.net/problem/LightOJ-1287 1287 - Where to Run PDF (English) Statistics Forum T ...
- 状态压缩动态规划 状压DP
总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...
- 动态规划专题(一)——状压DP
前言 最近,决定好好恶补一下我最不擅长的\(DP\). 动态规划的种类还是很多的,我就从 状压\(DP\) 开始讲起吧. 简介 状压\(DP\)应该是一个比较玄学的东西. 由于它的时间复杂度是指数级的 ...
- 【xsy1596】旅行 期望+状压DP
题目大意:有$m$个人要从城市$1$开始,依次游览城市$1$到$n$. 每一天,每一个游客有$p_i$的概率去下一个城市,和$1-p_i$的概率结束游览. 当游客到达城市$j$,他会得到$(1+\fr ...
- 2018.09.23 bzoj1076: [SCOI2008]奖励关(期望+状压dp)
传送门 一道神奇的期望状压dp. 用f[i][j]f[i][j]f[i][j]表示目前在第i轮已选取物品状态为j,从现在到第k轮能得到的最大贡献. 如果我们从前向后推有可能会遇到不合法的情况. 所以我 ...
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- BZOJ1076 [SCOI2008]奖励关 【状压dp + 数学期望】
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 3074 Solved: 1599 [Submit][Sta ...
- Problem Arrangement ZOJ - 3777(状压dp + 期望)
ZOJ - 3777 就是一个入门状压dp期望 dp[i][j] 当前状态为i,分数为j时的情况数然后看代码 有注释 #include <iostream> #include <cs ...
随机推荐
- ZOJ 2110 DFS
狗要出门,且正好在T秒 就是DFS + 剪枝, 联系一下剪枝技巧 #include<iostream> #include<cstdio> #include<cstring ...
- Laravel 5.2数据库--多个关联关系,带条件约束的渴求式加载的问题
### 今天在连表获取数据的时候,老是获取不到想要的,确实有点无力适从的感觉. 归根到底,还是对laravel不够熟悉,至少是数据库操作那块. ### 问题是这样的: 我想要通过连表中间表,拿中间表的 ...
- 【原创】运维基础之Docker(5)docker部署airflow
部署方式:docker+airflow+mysql+LocalExecutor 使用airflow的docker镜像 https://hub.docker.com/r/puckel/docker-ai ...
- [正则表达式]匹配Unicode
一.PHP[PCRE]之Unicode PCRE支持的16进制字符编码转义符有 \x00-\xFF,或\x{num},num为任意位16进制数 但并不支持\u0000-\uFFFF这的形式 PCRE运 ...
- windows连接服务端的域名正常,linux却不通,(针对于负载均衡后端节点设置)
1.初步判断不是网络上的,因为windows主机访问正常, 2.修改客户端linux主机 net.ipv4.tcp_tw_recycle=0,测试是否正常,(服务器当连接数达到一定量之后,会执行rec ...
- 洛谷P4705 玩游戏 [生成函数,NTT]
传送门 这是两个月之前写的题,但没写博客.现在回过头来看一下发现又不会了-- 还是要写博客加深记忆. 思路 显然期望可以算出总数再乘上\((nm)^{-1}\). 那么有 \[ \begin{alig ...
- 信息摘要算法之七:SHA在区块链中的应用
最近几年比特币的火爆带动了人们对区块链技术的研究.当然我们在这里并不讨论区块链技术本身,而是讨论一下区块链中的SHA算法的应用.对于SHA系列算法我们已经在前面作了说明,在这里也不再重复. 1.区块链 ...
- oracle提高查询效率的34条方法
注:本文来源:远方的守望者 <oracle提高查询效率的34条方法> oracle提高查询效率的34条方法 1.选择最有效率的表名顺序 (只在基于规则的优化器中有效): ORACLE的解 ...
- 洛谷P2014 选课
首先分析题目,这是一道树形dp的题目,是树形背包类的问题,以为每门课的先修课只有一门,所以这一定可以 构成一个森林结构,于是我们可以设计一个虚拟的根节点作为森林的根. 状态转移方程如下 dp[v][k ...
- J2SE基础小结
1. 九种基本数据类型的大小,以及他们的封装类. 类型 基本类型 大小(字节) 默认值 封装类 整数型 byte 1 (byte)0 Byte short 2 (short)0 Short int 4 ...