原文链接http://www.cnblogs.com/zhouzhendong/p/8084577.html


题目传送门 - BZOJ1856


题意概括

  找出由n个1,m个0组成的字符串,且任意前几个字符中1的个数不能比0的个数少,询问满足要求的字符串个数。


题解

  这位大佬写的好。

http://blog.csdn.net/wzq_qwq/article/details/48706151


代码

  1. #include <cstring>
  2. #include <cstdio>
  3. #include <algorithm>
  4. #include <cstdlib>
  5. #include <cmath>
  6. using namespace std;
  7. typedef long long LL;
  8. const LL mod=20100403;
  9. const int N=2000005;
  10. int n,m;
  11. LL fac[N];
  12. LL Pow(LL x,LL y){
  13. if (y==0)
  14. return 1LL;
  15. LL xx=Pow(x,y/2);
  16. xx=xx*xx%mod;
  17. if (y&1LL)
  18. xx=xx*x%mod;
  19. return xx;
  20. }
  21. LL Inv(LL x){
  22. return Pow(x,mod-2);
  23. }
  24. LL C(LL n,LL m){
  25. return fac[n]*Inv(fac[m])%mod*Inv(fac[n-m])%mod;
  26. }
  27. int main(){
  28. scanf("%d%d",&n,&m);
  29. fac[0]=1;
  30. for (LL i=1;i<=n+m;i++)
  31. fac[i]=fac[i-1]*i%mod;
  32. printf("%lld",(C(n+m,m)-C(n+m,m-1)+mod)%mod);
  33. return 0;
  34. }

  

BZOJ1856 [Scoi2010]字符串 数论的更多相关文章

  1. BZOJ1856[SCOI2010]字符串

    Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...

  2. BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)

    Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...

  3. BZOJ1856[Scoi2010]字符串——组合数学+容斥

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  4. [BZOJ1856][SCOI2010]字符串(组合数学)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1856 分析:http://www.cnblogs.com/jianglangcaiji ...

  5. bzoj千题计划299:bzoj1856: [Scoi2010]字符串

    http://www.lydsy.com/JudgeOnline/problem.php?id=1856 卡特兰数 从(1,1)走到(n,m),不能走y=x 上方的点,求方案数 从(1,1)走到(n, ...

  6. 2018.09.25 bzoj1856: [Scoi2010]字符串(组合数学)

    传送门 如果有n==m的条件就是卡特兰数. 但现在n不一定等于m. 我们可以考虑用求卡特兰数一样的方法来求答案. 我们知道有一种求卡特兰数的方法是转到二维平面求答案. 这道题就可以这样做. 我们将这个 ...

  7. BZOJ1856: [Scoi2010]字符串(组合数)

    题意 题目链接 Sol \(30 \%\)dp: \(f[i][j]\)表示放了\(i\)个\(1\)和\(j\)个\(0\)的不合法方案 f[0][0] = 1; cin >> N &g ...

  8. 【BZOJ1856】[SCOI2010]字符串(组合数学)

    [BZOJ1856][SCOI2010]字符串(组合数学) 题面 BZOJ 洛谷 题解 把放一个\(1\)看做在平面直角坐标系上沿着\(x\)正半轴走一步,放一个\(0\)看做往\(y\)轴正半轴走一 ...

  9. Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论

    1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][ ...

随机推荐

  1. Django 配置(一)开启服务

    注:这里使用的是命令行创建,当然也可以用 pycharm 自带的 django 项目创建更加简便. 安装django pip install django 创建项目 django-admin star ...

  2. Day7--------------虚拟机网络服务

    1.桥接 连接到本地的网卡,把本机的网卡看作是虚拟交换机 ping ip地址 arping -i eth0 192.168.11.11 返回物理MAC地址             #可以检查是否有重复 ...

  3. grep,find

    grep是强大的文本搜索工具,他可以对文件逐行查看,如果找到匹配的模式,就可以打印出包含次模式的所有行,并且支持正则表达式 find查找文件的grep是来查找字符串的,文件的内容 grep 文件的内容 ...

  4. Android中播放音乐的几种方式

    前言 前几天一直在研究RxJava2,也写了记录了几篇博客,但因为工作任务原因,需要研究音频相关的知识,暂时放下Rxjava,本文的demo中,MediaPalyer 部分使用RxJava编写一点逻辑 ...

  5. ios中input获取焦点时的问题

    1.获取焦点时,input会变大 解决办法是:font-size设置为32px以上 还有就是要在header里面加这一行代码:<meta name="viewport" co ...

  6. swift 学习- 23 -- 扩展

    // 扩展 就是为一个已有的 类, 结构体, 枚举, 或者 协议类型添加新功能, 这包括在没有权限获取 原始代码的情况下 扩展类型的能力 (即 逆向建模), 扩展和 OC 中的分类类似, (与 OC ...

  7. 彻底完全卸载 SQL Server 2005 的图文教程

    彻底完全卸载 SQL Server 2005 的图文教程 SQL SERVER 2005不象SERVER 2000所有组件都汇总在一起,所以卸载时特别麻烦,如果不按正常的方法卸载,重新安装是不可能安装 ...

  8. Confluence 6 数据库和临时目录

    数据库 所有的其他数据库,包括有页面,内容都存储在数据库中.如果你安装的 Confluence 是用于评估或者你选择使用的是 Embedded H2 Database 数据库.数据库有关的文件将会存储 ...

  9. selenium怎么操作web页面常见的元素

    总结一下selenium怎么操作web页面常见的元素. 主要有: 上传 alter dialog prompt dialog confirm dialog select list radio box ...

  10. js之DOM对象三

      一.JS中for循环遍历测试 for循环遍历有两种 第一种:是有条件的那种,例如    for(var i = 0;i<ele.length;i++){} 第二种:for (var i in ...