\(BSGS\)用于解决这样一类问题:

求解\(A^x ≡B(modP)\)的最小\(x\),其中\(P\)为质数。

这里我们采用分块的方法,把\(x\)分解为\(i *t-b\)(其中\(t\)是分块大小) 。根据模意义下逆元的性质,\(x\)的大小一定\(<=phi(p)\)即\(p - 1\),所以经过移项和进行存在性对比,我们就可以\(O(N)\)求出答案。

int BSGS (int A, int B, int P) {
int t = (int) ceil (sqrt (P));
for (int j = 0; j < t; ++j) {
mp[_mul (B, _pow (A, j, P), P)] = j;
//mp[ B * A ^ j ] = j;
}
A = _pow (A, t, P);
for (int i = 1; i <= t; ++i) {
int val = _pow (A, i, P);
//val = A^{i*t};
int j = mp.find (val) == mp.end () ? -1 : mp[val];
if (j >= 0) {
return i * t - j;
}
}
return -1;
}

上面这份代码中其实还可以把快速幂的\(log\)优化掉,可能会被卡常。

几个要注意的关键点:

  • 避免快速幂
  • 优化快速乘
  • 小心取模和\(longlong\)
  • \(p\)一定要是质数!
  • 建议手写哈希不然会多一个\(log\)(\(unordered\_map\)是不允许使用的)

\(exBSGS\)其实就是一个简单的扩展,把情况扩展到了\(p\)不是质数的情况,这种情况我们要先把\(P\)和\(A\)化为互质的状态。也就是说:对\(A\)和\(P\)取\(gcd\)直到其互质为止,从而化为如下形式:

\[(A/d)^{cnt} * A^{x}≡B/d^{cnt} (mod P/d^{cnt})
\]

其中,当\(B\)不能被二者的\(gcd\)整除时,就意味着原方程无解。

几个注意点:

  • 前面的\((A/d)^{cnt}\)同样需要统计进去
  • 要使用\(exgcd\)求解,因为可能不存在逆元。
  • 可能存在\(x==0\)的情况,记得特判
  • 快速乘,\(longlong\),取模,务必小心。
int exbsgs (int A, int B, int p) {
if (B == 1) return 0;
int _gcd, cnt = 0, res = 1;
while ((_gcd = gcd (A, p)) != 1) {
if (B % _gcd) return -1;
B /= _gcd, p /= _gcd, ++cnt;
res = ((res % p) * (A / _gcd)) % p;
if (res == B) return cnt;
}
int t = sqrt (p) + 1, tmp = 1;
Hash.clear ();
for (int i = 0; i < t; ++i) {
Hash[(tmp * B) % p] = i;
tmp = (tmp * A) % p;
}
res = (res * tmp) % p;
for (int i = 1; i <= t; ++i) {
if (Hash.find (res) != Hash.end ()) {
return i * t - Hash[res] + cnt;
}
res = (res * tmp) % p;
}
return -1;
}

BSGS与exBSGS学习笔记的更多相关文章

  1. exBSGS学习笔记

    exBSGS学习笔记 Tags:数学 题目的话就做下洛谷的模板好了 // luogu-judger-enable-o2 #include<algorithm> #include<io ...

  2. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  3. OI数学 简单学习笔记

    基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\ ...

  4. OI知识点|NOIP考点|省选考点|教程与学习笔记合集

    点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...

  5. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  6. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  7. PHP-会员登录与注册例子解析-学习笔记

    1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UM ...

  8. 2014年暑假c#学习笔记目录

    2014年暑假c#学习笔记 一.C#编程基础 1. c#编程基础之枚举 2. c#编程基础之函数可变参数 3. c#编程基础之字符串基础 4. c#编程基础之字符串函数 5.c#编程基础之ref.ou ...

  9. JAVA GUI编程学习笔记目录

    2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...

随机推荐

  1. webpack始出来

    一直想好好整理一下webpack,现在就整理吧. 总结自己的实际搭建的整理情况,我还是要先对自己说一句,以后给文件夹起名字的时候不要用一些特殊的关键字,比如我在做这个demo的时候,我用的文件夹名称叫 ...

  2. JS实现控制HTML5背景音乐播放暂停

    首先在网页中嵌入背景音乐,html5代码为: <script src="http://wuover.qiniudn.com/jquery.js"></script ...

  3. luogu2258

    题面 sol:先爆搜搜出r行,再在那r行中选c列DP得到最优解 我太菜了,这种题都做了好久,还需锻炼码力啊qwq #include <cstdio> #include <cstrin ...

  4. 欧拉筛法模板&&P3383 【模板】线性筛素数

    我们先来看欧拉筛法 •为什么叫欧拉筛呢?这可能是跟欧拉有关 •但是为什么叫线性筛呢?因为它的复杂度是线性的,也就是O(n),我们直接来看代码   #include<cstdio> #inc ...

  5. 基于FPGA的UART协议实现(通过线性序列机)

    //////////////////2018/10/15 更新源代码: 实现uart这东西其实早就写了,不过不太完善,对于一个完美主义者来说,必须解决掉它. 1.什么是UART?        通用异 ...

  6. 睡眠麻痹 CSP HSP

    睡眠麻痹 CSP HSP 来源 https://www.zhihu.com/question/29666875/answer/65480583 俗名“鬼压床”.“鬼压身”或者“梦魇”的,学名叫睡眠麻痹 ...

  7. 15 Zabbix Item类型之Zabbix trapper类型

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 15 Zabbix Item类型之Zabbix trapper类型 zabbix获取数据时有时会出 ...

  8. Codeforces Round #545 Div1 题解

    Codeforces Round #545 Div1 题解 来写题解啦QwQ 本来想上红的,结果没做出D.... A. Skyscrapers CF1137A 题意 给定一个\(n*m\)的网格,每个 ...

  9. sql语句循环截取字符串

    测试环境 : mssql2016 express 需求 : 拆分字符串执行insert 思路 : 在循环中截取分隔符之间的字符串.起止点位置计算    起点从0开始startIndex,查找第一个分隔 ...

  10. 不裸缩点》。。。POJ2186受欢迎的牛

    不裸缩点>...POJ2186受欢迎的牛 :first-child { margin-top: 0; } blockquote > :last-child { margin-bottom: ...