ACM计划
原文 :http://027xbc.blog.163.com/blog/static/128159658201141371343475/
ACM主要是考算法的,主要时间是花在思考算法上,不是花在写程序与debug上。
下面给个计划:
第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,
因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打
出来.
1.最短路(Floyd、Dijstra,BellmanFord,spfa)
2.最小生成树(先写个prim,kruscal要用并查集,不好写)
3.大数(高精度)加减乘除
4.二分查找. (代码可在五行以内)
5.叉乘、判线段相交、然后写个凸包.
6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简)
7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式.
8. 调用系统的qsort, 技巧很多,慢慢掌握.
9. 任意进制间的转换
第二阶段:练习复杂一点,但也较常用的算法。
如:
1. 二分图匹配(匈牙利),最小路径覆盖
2. 网络流,最小费用流。
3. 线段树.
4. 并查集。
5. 熟悉动态规划的各个典型:LCS、最长递增子串、三角剖分、记忆化dp
6.博弈类算法。博弈树,二进制法等。
7.最大团,最大独立集。
8.判断点在多边形内。
9. 差分约束系统.
10. 双向广度搜索、A*算法,最小耗散优先.
ACMer必备知识(这么多呀,慢慢学了……)
图论
路径问题
0/1边权最短路径
BFS
非负边权最短路径(Dijkstra)
可以用Dijkstra解决问题的特征
负边权最短路径
Bellman-Ford
Bellman-Ford的Yen-氏优化
差分约束系统
Floyd
广义路径问题
传递闭包
极小极大距离 / 极大极小距离
Euler Path / Tour
圈套圈算法
混合图的 Euler Path / Tour
Hamilton Path / Tour
特殊图的Hamilton Path / Tour 构造
生成树问题
最小生成树
第k小生成树
最优比率生成树
0/1分数规划
度限制生成树
连通性问题
强大的DFS算法
无向图连通性
割点
割边
二连通分支
有向图连通性
强连通分支
2-SAT
最小点基
有向无环图
拓扑排序
有向无环图与动态规划的关系
二分图匹配问题
一般图问题与二分图问题的转换思路
最大匹配
有向图的最小路径覆盖
0 / 1矩阵的最小覆盖
完备匹配
最优匹配
稳定婚姻
网络流问题
网络流模型的简单特征和与线性规划的关系
最大流最小割定理
最大流问题
有上下界的最大流问题
循环流
最小费用最大流 / 最大费用最大流
弦图的性质和判定
组合数学
解决组合数学问题时常用的思想
逼近
递推 / 动态规划
概率问题
Polya定理
计算几何 / 解析几何
计算几何的核心:叉积 / 面积
解析几何的主力:复数
基本形
点
直线,线段
多边形
凸多边形 / 凸包
凸包算法的引进,卷包裹法
Graham扫描法
水平序的引进,共线凸包的补丁
完美凸包算法
相关判定
两直线相交
两线段相交
点在任意多边形内的判定
点在凸多边形内的判定
经典问题
最小外接圆
近似O(n)的最小外接圆算法
点集直径
旋转卡壳,对踵点
多边形的三角剖分
数学 / 数论
最大公约数
Euclid算法
扩展的Euclid算法
同余方程 / 二元一次不定方程
同余方程组
线性方程组
高斯消元法
解mod 2域上的线性方程组
整系数方程组的精确解法
矩阵
行列式的计算
利用矩阵乘法快速计算递推关系
分数
分数树
连分数逼近
数论计算
求N的约数个数
求phi(N)
求约数和
快速数论变换
……
素数问题
概率判素算法
概率因子分解
数据结构
组织结构
二叉堆
左偏树
二项树
胜者树
跳跃表
样式图标
斜堆
heap
统计结构
树状数组
虚二叉树
线段树
矩形面积并
圆形面积并
关系结构
Hash表
并查集
路径压缩思想的应用
STL中的数据结构
vector
deque
set / map
动态规划 / 记忆化搜索
动态规划和记忆化搜索在思考方式上的区别
最长子序列系列问题
最长不下降子序列
最长公共子序列
最长公共不下降子序列
一类NP问题的动态规划解法
树型动态规划
背包问题
动态规划的优化
四边形不等式
函数的凸凹性
状态设计
规划方向
线性规划
常用思想
二分
最小表示法
串
KMP
Trie结构
后缀树/后缀数组
LCA/RMQ
有限状态自动机理论
排序
选择/冒泡
快速排序
堆排序
归并排序
基数排序
拓扑排序
排序网络
ACM计划的更多相关文章
- 【记录】ACM计划
ACM进阶计划ACM队不是为了一场比赛而存在的,为的是队员的整体提高.大学期间,ACM队队员必须要学好的课程有:lC/C++两种语言l高等数学l线性代数l数据结构l离散数学l数据库原理l操作系统原理l ...
- ACM进阶计划
ACM进阶计划ACM队不是为了一场比赛而存在的,为的是队员的整体提高.大学期间,ACM队队员必须要学好的课程有:lC/C++两种语言l高等数学l线性代数l数据结构l离散数学l数据库原理l操作系统原理l ...
- [转]ACM进阶计划
ACM进阶计划 大学期间,ACM队队员必须要学好的课程有: lC/C++两种语言 l高等数学 l线性代数 l数据结构 l离散数学 l数据库原理 l操作系统原理 l计算机组成原理 l人工智能 l编译原 ...
- ACM 入门计划
acm 本文由swellspirit贡献 ACM • I can accept failure. but I can't accept not trying. Life is often compar ...
- 【河南省第十一届ACM程序设计大赛-A】计划日
已知李明在YYYY年MM月DD日星期W订了学习计划,现在想看看李明N天后的完成情况和个人总结,你能告诉我那天的日期和星期几吗? 输入 第一行: T 表示以下有T组测试数据 ...
- F的ACM暑期集训计划
暑假的知识计划(补充中...) 1.数论相关 (7days) 待完成 多项式同余方程/高次同余方程/欧拉函数/克莱姆法则/高斯消元/莫比乌斯反演/伪素数判定/baby-step-gaint-step ...
- 牛客ACM赛 B [小a的旅行计划 ]
链接 B 小a的旅行计划 把\(n\)个数中选任意数分成\(a,b\)两个集合,集合无区别,要求不包含且有交,求方案数.\(n\leq 10^{13}\) 首先讨论\(a,b\)并集是否为全集: 若是 ...
- ACM 第十一届 河南省省赛A题 计划日
一.题目描述如下: 二.思路分析 其实这个如果是一个填空题,可以直接用Excel快速计算出来,反而用代码比较麻烦 说一下我的代码的思路: 1.如果N大于本月剩下的天数,就先从N天里减去本月剩下的天数, ...
- 牛客网 牛可乐发红包脱单ACM赛 B题 小a的旅行计划
[题解] 题意其实就是把n个物品分成4个集合,其中三个集合不可以为空(只属于A.只属于B.AB的交),一个集合空或者非空都可以(不属于A也不属于B),问有多少种方案. 考虑容斥,4个集合都不为空的方案 ...
随机推荐
- 20175314 《Java程序设计》第七周学习总结
20175314 <Java程序设计>第七周学习总结 教材学习内容总结 第八章:常用实用类 String()类代表字符串:Java 程序中的所有字符串字面值(如 "abc&quo ...
- Cisco交换机设置备份
conf tusername xa privilege 3 secret xxx aaa new-modelaaa authentication login default local enablea ...
- button的后台点击事件
在html元素加上runat,type就可以使用onserverclick创建后台事件<button runat='server' onserverclick='Btn_Click' type= ...
- unity 动态更新模型透明度
RaycastHit[] hits; Vector3 normal = transform.position - target.position; hits = Physics.RaycastAll( ...
- CentOS7 修改静态IP地址
Ip配置文件在/etc/sysconfig/network-scripts文件夹下,查找该文件的方法为: [root@localhost ~]# ll /etc/sysconfig/network-s ...
- linux下搭建Jenkins环境
前提:Tomcat.jdk已安装并配置成功,具体安装和配置可参考我的其他随笔,在此不再详述 1.官网下载Jenkins最新war包,jenkins.war 2.进入Tomcat安装目录,创建Jenki ...
- 初学html,任务2:写一个简单的登陆/注册界面
先在body中把最基础的标签写出来 现在页面运行出来是这样的 就是一个没有任何样式的基础界面: 接下来我们为这些标签加上样式 首先还是让页面所有元素的padding和margin都设置为0, 清除浏览 ...
- tomcat修改banner,隐藏版本号
为了避免黑客针对某些版本进行攻击,因此我们需要隐藏或者伪装 Tomcat 的版本信息.针对该信息的显示是由一个jar包控制的,该jar包存放在 Tomcat 安装目录下的lib目录下,名称为 cata ...
- appnium启动报错Encountered internal error running command: Error: Error occured while starting App. Original error: Permission to start activity denied.
说明写错了activity 首先查看一下activity,使用命令 打开被测app,输入命令adb shell dumpsys window | findstr mCurrentFocus 看似这个a ...
- Finance API文档
0. 公共部分 请求url {apiRoot}/{method}?ver={version}&appkey={appkey}&sign={sign} 参数名 说明 示例 apiRoot ...